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REGRESSION ANALYS IS PROCEDURES FOR THE EVALUATION
OF TRACKING SYSTEM MEASUREMENT ERRORS

SUMMARY

The TEMS Multiple Regression Analysis Method for evaluating systematic
errors in measurements obtained from various tracking systems is presented.
The mathematical procedures in the method include a rigorous least squares
adjustment of error model parameters with constraints. The mathematics for
using a priori values for these parameters and their variances is also in-
cluded. Truncated tracker error models for representing the systematic
errors are established using the TEMS method in conjunction with a stepwise
regression procedure. The basic approach in the stepwise regression procedure
involves examining at every step the variables incorporated in the error model
in previous steps. A specific variable is deleted from or entered into the
model by using the Gaussian Elimination Method for solving the linear system
of normal equations in the regression.

Although C-band radar error models are used in the development, the
procedures can be adapted to other types of tracking systems. Results from
application to the Apollo-Saturn 501 (AS-501) flight test data are presented and
indicate generally acceptable truncated C-band radar error models.

INTRODUCTION

The errors in a given measurement obtained from a tracking system can
be classified as random and systematic. The random errors are random in
character and thus cannot be predicted. The effects of random errors can,
however, be minimized by using a sufficiently large number of observations in
a least squares reduction. The combined effects of sources of significant
systematic error on each quantity measured by a tracking system are frequently
represented by analytical expressions referred to as error models. The
problem of evaluating these systematic errors represented by error models is
of importance in determining an accurate flight trajectory from the basic tracking
measurements.




A method for accomplishing this evaluation is provided in TEMS, an
acronym for Tracking System Error Model Studies. The overall objectives of
the studies are twofold:

(1) To evaluate systematic errors in the tracking system measure-
ments used in determining a postflight trajectory.

(2) To conduct analyses to establish truncated tracker error models
to represent the systematic errors.

Basically, the TEMS Multiple Regression Analysis Method [ 1, 2, 3] involves
establishing the tracker errors and then determining, in the least squares
sense, error model expressions to describe these established errors. Results
from application of the method to Apollo-Saturn flight test data are presented in
Reference 4. In these references, truncating the total error models was
required because of highly correlated coefficients that made an insignificant
error confribution. The approach to constructing truncated error models using
the TEMS results has been based on the significance of an individual variable
and its correlation with other variables. This approach actually constitutes a
gualitative examination of a subset of regressions from the all possible
regressions approach.

There are other model building approaches. These include: backward
elimination procedure, forward selection procedure, stepwise regression
procedure, and stagewise regression procedure. These are not unique, however,
so far as selecting which of several independent variables should be used in a
regression equation to describe a response variable. The different procedures
mentioned above do not necessarily give the same results when applied to the
same problem. After a careful study of all the procedures, it was concluded that
the stepwise regression procedure had the greatest potential for useful appli-
cation to the TEMS error model construction problem. Other applications of
the stepwise procedure can be found in References 5 and 6. Additional infor-
mation on the other procedures is also contained in Reference 5.

The basic approach in the Stepwise Regression Analysis involves
examining at every step the variables incorporated into the regression model
in previous steps. At a given step in the analysis, a specific variable is
deleted from or entered into the regression model by using the Gaussian
Elimination Method for solving the linear system of normal equations.

This method is ideally suited for application of the stepwise procedures
since it obtains elements of the solution vector one at a time. The final
regression model results in only the most significant variables being
retained in the model.



Application of the TEMS method and the Stepwise Regression Analysis
to C-band radar tracking systems operating on the Apollo~Saturn V AS-501
flight is presented later in the report. A summary of the C-band radar
tracking data utilization on the first burn flight phase (launch to parking orbit
insertion) and the S-IVB second burn flight phase (S-IVB reignition to S-IVB/
CSM separation) is included. The approach given by the guidelines in this
report for obtaining truncated error models to describe the systematic
errors has generally resulted in acceptable models for the AS-501 first and
second burn data. Several cases are noted on the stepwise results for the AS-501
data where the introduction of additional variables into the regression does not
improve significantly the Oy curve fit value. It appears that a rather critical

examination of results from application of the stepwise procedures is required
in order to obtain meaningful and useful information for input to the TEMS
program.
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THE TEMS MULTIPLE REGRESSION ANALYSIS METHOD

Introduction

The development of mathematical procedures in the TEMS Multiple
Regression Analysis Method is presented in this section. The development
provides for a comprehensive evaluation of systematic errors in measure-
ments obtained from various radar tracking systems. Detailed mathematics
for a rigorous least squares adjustment of the radar error model parameters
(coefficients) is presented. Included are provisions for the use of a priori
information about the coefficients of the error model expressions. Coefficient
variances can also be constrained to be consistent with a priori values. In
addition, a priori estimates for the coefficients can be entered into the adjust-
ment. Functional relations between the coefficients are also considered in
the development. An important by-product of the adjustment is the variance-
covariance matrix of the estimated error model coefficients.

The C-band radar tracking system error models used in the development
are discussed in Appendix A. It should be noted, however, that the development
of the method for application to tracking systems other than radars is analogous
to that in this section. A similar development for the AZUSA (Glotrac Station I)
tracking system is contained in Reference 3.

Observational Equations for the Least Squares Adjustment
with Parameter Constraints

The basic tracking data which serve as input consists of the radar
measured tracking parameters (R% A° E% and of a reference trajectory
representing the best estimate of the trajectory from a composite of data.
These composite data are from various tracking systems such as AZUSA,
Radar, ODOP, Glotrac, and fixed cameras. The reference trajectory is in
an earth-fixed plumbline coordinate system (Xe, Ye’ Ze) with origin at

the launch site. These data are transformed into radar reference tracking
parameters by the two transformations:



Z ) — Z
(a) (Xe’ Ye’ e) (Xes’ Yes’ es

r T T
(b) (X, Y _,Z )= (R, A, E)

Detailed mathematics involved in these transformations are given in
Appendix B. The tracking errors for the particular system under consideration
and for the i-th observation are thus determined from the equations:

AR’ = R, - R®

1 1 1
A0 = AT _ A0
AAL = A - AL

AR = EF - R°

1 1 1 (1)

An additional transformation of the form:
X , , Z - s ’
(e) « es Yes es) (X, Y, 2)

is required to determine the position of the vehicle in an earth-fixed ephemeris
coordinate system with origin at the tracking site. This transformation is
also given in Appendix B.

The fundamental observational equations are expressed in the following
form (i =1,2,. . ., n):

AR AR, -V.. =0 )
i i Ri
AMY_AA -V . =0 L
i i Ai
0
- E._ :O
AEi Ai VEi (2)

The functional expressions for the systematic errors in equation (2) are
givenby (i=1,2,. . ., n): '



AR =Cg+ CiR, + CyR, + Cy(-. 022 cosec E,) + C5(X,/R,)

+Cg(Y,/R,) + Cr(Z,/R) + Cgly

AA =Dy + D, + DyA, + Dy tan E, + Dg sec E, + Dy tan E, sin A,

i

+ Dy tan Ei cos Ai + Dy [(sin Ai cos Ai)/Xi]
-3i + A
+ Dyy [(-sin Ai cos Ai)/Yi] D11Ai sec Ei

AE, = Fy + FiE, + F4E + F; (-sin A)) + Fgcos A,

i

. 022 e )
—_—— + -
+ Fy [(Ri sin Ei 10 >cotanEi] Fyl( X, tan Ei)/Ri]

- 2 :
+ Fypl ( Y, tan Ei)/Ri] + Fyyl(cos Ei)/Ri] +FpE cosE,

/

(3)

The following constraints in the form of functional relations between the

coefficients are imposed upon equations (3):

CZ=D1=F1 \

S
It
i
I
o

Cqr =Fy
Dy = Fs
D7 = Fs J

Equations (3) are thus rewritten as (i=1,2,. .. ,n)

(4)



where

~

~

, 4+ Cer  + Cgr_, + CqT . + Cgr ]
g 0oty ¥ Gl + CrTg, + Coty

ARi =Cpy+ Cirn + Ceri + C4r3
= +
AAi Do Czaii + D3&21 + D5a31 + Dsa4i + D-IaSi + DBaGi
+ + +
C5a7i Csa8i Dnagi r
(5)
= +
AEi Fo Czeii + F3€21 + Dgesi + D7e4i + 04651 + C5e6i
+ + +
Ceeny * Creg; * Froy; 7
~ _ R' ~ -
1375 Ty = %/Ry
T.. =R, T =
21T Toi = /R
1‘3i = -, 022 cosec Ei r6i = Zi/Ri
T =Y
a5 =4 T
89 =4 €9 = B
3.3i = tan Ei e3i = -gin Ai
a4i=sec Ei e4i=cos Ai
a_, =tan E, sin A _ . 022 -8
5i i i e5i = [————Ri Sin Ei 10 ] cotan Ei
a61 = tan Ei cos Ai
= (- E 2
a_. = (sin A, cos A,) /X, egy = (X tan E,)/R}
71 i i i
= (= 2
a .= (-sin A, cos A,)/Y, 71 ( Yi tan Ei)/Ri
8i i i i
a. = A sec E, esi = (cos Ei)/Ri
9i i i .
e..=E cos E,
9i i i



The coefficients in equation (5) are written as:

(6)
Fp = %1‘12 + 6F12

where 'CNJO, 51, cees %“12 are approximations (which can be chosen equal to zero
if desired) to Cy, Cy,. .., Fyy, respectively; and 6C;, 6Cy, ..., O0Fy, are
unknown corrections which will be determined in the least squares sense. The
systematic errors can then be written as (i =1,2, ..., n):

AR, = AR, + 6 AR,
1 1 1

AA1=AAi+<‘5AAi (7)

AE. = AE. + 6 AE.
1 1 1

where
Ri Co Cl 11 Ceri Csr7i
~ _ ~ + ~ + ~ 4 . + ~
AAI D0 Czaii D3a2i Duagi ( 8)
~ _ ~ + ~ + ~ + L + ~
AEi Fy Cze1i F3e21 Flze9i



and

= —+ T -4- T + ... * T
6ARi 600 6011‘ 6Cgr2i 608r7i

1i
(9)
6AAi = 6Dy + 602&1i + <SD3a2i +..0 6D11agi
<5AEi = 6F, + 60261i + <5F3e2i +...+ 6F12e9i
Substituting equations (8) and (9) in equations (7) and the result in
equations (2) yields the following observational equations (1 =1,2,. . .,n):
0 ~ ~ ~ ~ o~ \
ARi - [(Co+ C.lrii + ...+ Car,?i)
+ (6Co + 6CyF, . +..u + 6Cgr, )] =V, =0
AAO - [(ﬁ0+623 s +]N)112. .)
i 1i 9i (10)
+(6D°+502a11+"‘ +6D11a91)] —VAi=0 L
AEE - [(Fo + Czeii + 0. + Fizegi)
+ (8Fg+ 0Cqe  + ... +0Fpey )] -V, =0

The system given by equations (10) can be written in matrix notation as:

N-(BC+B&) -V=0 (11)



where

10

[18x1]

n> - (=]

-

T gl Al Qt Qt Ot QL Ot Q. A
[} © -3 [~ o

r 9

Dy

(12)

6C,
6C4
5C;
6C,
5Cs
6Cq
6C;
6Cq
&D,
6D;
6D;
6Dg
6Dy
6Dg
6Dyy
5F,
6F,

6Fy |

(13)



i

[3nx1]

(14)

[8nx1]

<

R1
Al

<

R2
A2
E2

< < < <

<

Rn
An

<

VEnJ

(15)

11
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In addition to the observational equations (11), error model coefficient
observational equations are introduced into the adjustment using the following

equations: )
Co = Co + VCQ W

o

[>e]
Cy =Cy +V

Fp=Fpg +V (17)
12 12 F12

/

where the superscript « denotes an a priori value of the coefficient and
v.,V,.,...,V are the corresponding observational residuals.
Coy Cy Fy,

Substituting equations (17) into equation (6) and rearranging these equations, the
following observational equations for the error model coefficients are obtained:
\

V., -68Cy-Cy+Cyq
Cy

It

0

~ [> 0]
V., -6Cy-Cy+C; =
Cy

!
o

(18)
~ [
VF12—5F12—F12+F12=0
Equations (18) are written in matrix notation as:
where
r- =] F-f\l [>]
Ve, co—coT
v C;-Ci
Ci A |
= . 20) . 21
vV = ( = = (21)
[18x1] ) [18x1] )
v Ty - Fyy
Fy _Fm B 12_

13



The overall set of observational equations is then given by:

) -V=0

Z|
1
I
ol
b:l|

<-|
]
o]
1
m |
1
[e=]

(22)

The Normal Equations

The final system of observational equations given by the matrix equations

(22) consists of (3n+ 18) linear equations in the 18 unknown corrections to the
approximated error model coefficients. In general, for the application herein
the total number of observational equations (3n + 18) is large compared to the
number of unknown corrections. Thus the system consists of an over-deter-
mined set of equations wherein the effects of random observational errors can
be minimized in a least squares reduction. According to the principle of least
squares, the best representation of the data is that which makes the weighted
sum of the squares of the residuals a minimum. Thus the function to minimize

is:

n
f((sCo, 5011- ooy 6F12) = Z (W3 ZVZR )+ Z (W31 1V2A
i=1

2 )
+ W31VE1) + W1V

Cy

ADs

+W,VE, 4.t WV (23)
1 Ve, Wi Ve,

.

The condition which fulfills the minimizing requirements is that the
partial derivatives with respect to each of the 18 unknown corrections be zero.
Thus the following 18 normal equations are obtained:

nr aVv. n v
of Ri Ai
9(6Cy) i=Z1 Wai2VRi a(ac(,)} 1;1 [W3i—1VAi a(aco)J

¥ (24)
nr ov oVe
1 0

+
Z/ Wi Vs a(aco)] *WiVe, 3(sCy)

=0

L

14 Note: Equation (24) is concluded on following page.



n oV n oV
of Ri Ai
a(6Cy) izi [WSi—ZVRi 8(6Cy ]+ 121 [Wsi-ivAi a(acl)]

n vy, | . oV,
+ + =0
121 W3iVEi a(ocy | T V2Ve, a(scy)

Il

n ov.,. n ov, .
__..af__..__.. Z w . Vv . —B‘.l_ + W . Vv . —Al_
8(8Fp) 4 | 8i-2'Ri 8(6Fyp) 3i-1' Ai 8(6Fg)

1 i=1
v ov (24)
n [ . F
Ei : 2 (Con-
+ V... == | + WV Ao =0
i; sti Ei 8(6F12)] BYF1 5(6Fy) cluded)
The system of normal equations given by equations (24) can be con-
veniently written in matrix notation as:
PWV+PWV = 0 (25)
where
— ]
2/2., 0 0...... 0 0 0
o 0/02R1 0 0
...... 0 0 0
0 oio/oi . 0
w o=l 0 ot/ ol 0 0 0 (26)
[ 3nx3n] . . . . .
0 0 0. ..... 020/0an 0 0
0 0 (1 S 0 o/, O
K 0 0. ..... 0 0 o%,/oZEE
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—
Ve, Var Vi ey BV, |
8(6Cy) 9(8Cy 9(8Cy) 8(6Cy) 9(6Cy 9(8Cy)
BVL, 8V, 8Vg Vg OV, VL
8(6Cy) 9(6Cy) 9(6Cy) 8(6C4) 9(6Cy) 9(6Cy) (27)
P =
[18x3n] BV, OV, 8Vy, . BV 9V, Vo
9(6Cy) 9(6Cy) 9(8Cy) 9(6Cy) 8(6C,) 9(8C,)
OV, OV, Vg, oVL 8V, VL
| 9(6Fy) 8(0F ) 8(OFp) 8(8F1p) 9(8Fy) 8(6F ) |
= -
Ve,
5Cy) 0 ceee 0
0 (28)
S
—_ 1
P = 0 0
N 6
[18x18] 8(0Cy) :
0 0 VFy
 TETFg)
L -
2
ozo/oco 0 0
0 020/02Cl 0
W = .
[ 18x18] . (29)
0 0 o/ o
Fip
—— —

16



It is perhaps important to point out that if the j-th error model coefficient
is to be unconstrained, then the j-th diagonal element of equation (29) is equated
to zero. It has also been found from experience that if the error model fits the
physical situation and there is no significant correlation between the coefficients,
then erroneous (within reasonable limits) observational weighting in equation (26)
does not have a significant effect upon the determination of the coefficients. The
associated estimates of variances and covariances become erroneous, however.
Additional information on the subject of observational and parameter weighting
in the least squares adjustment is contained in Appendix C of Reference 2.

The matrix expressions for the residuals V and V in equation (25) can
be obtained directly from the observational equations (22) and written as:

{/=5+E (30)

Substituting equations (30) in equation (25) yields the following matrix
equation for the normal equations:

PWIN-(BC+B6)]+PW(e+6)=0 (31)

Solving for &:

B+PW) ![-PW(N-BC) - PWcel

5= (-P (32)

Detailed examination of B and P reveals that the solution given by equation (32)
is equivalent to:

T T T

-B

z|

F= (B WB+W) ! (BLW WBC-W?e) (33)

After 6 has been found from (33), this value is added to the initial approximation

C to obtain the adjusted error model coefficients. The matrix (BX W B + W)

is the coefficient matrix of the reduced normal equations. The inverse of this

matrix multiplied by the unit variance provides an estimate of the output variance-co-
variance matrix of the error model coefficients resulting from the regression.
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Properties of the Adjustment

The vector of least squares residuals for the observations may be
computed directly from the observational equations or from equations (30)
after the normal equations have been solved for 6. The least squares
residuals thus obtained can be rewritten in the more familiar quadratic form

as:

T WV (34)

5-v T

WV+V
An estimate of the unit variance resulting from the adjustment is given by:

0% =5/t (35)

where f is the degrees of freedom involved and is the number of observations in
excess of the minimum required for a unique solution.

This is given by:
f=3n (36)

where 3n is the total number of observations less the number of unknowns.

An estimate of the variance-covariance matrix for the parameters re-
sulting from the regression analysis is given by:

G =B

c W§+%r1 (37)
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For the 18 x 18 case, the matrix ;C is given by:

-, .
g g g
Co CeCi ... CoFp
o ol .. 0C
_ CoCy Cy CiFy
g, = . . .
C (38)
ag g 0'2
| CoF'p CiFy Fo

The elersents of the covariance matrix of the error model coefficients thus
permits the accuracies of the final results to be estimated.

MATHEMATICAL DEVELOPMENTS IN A STEPWISE
REGRESSION ANALYSIS

Basic Stepwise Approach

The basic approach in a stepwise regression analysis involves examining
at every step the variables incorporated into the regression model in previous
steps. A variable determined to be significant at an earlier step may be
insignificant at a later step because of its relation with other variables in the
current regression. Results from a given step in the analysis provide statistical
F tests whereby it can be determined if a specific variable should be deleted from
or entered into the regression model. The test for deletion is made before a
variable is added to the regression. The procedure is terminated when no
more variables will be admitted and no more will be rejected. A summary of
the basic stepwise approach is given in Figure 1.
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YC =bg +by Z; +by Zg +... +prp FI( ouT) test for ‘
: . s deletion of I-th —»@
p variables 1n- current variable
regression
Determine
I-th variable delefgdm current

regression l F test
g q(IN) st for

entry of q-th
I-th variable not. de }Eted

] variable
Determine
q-th variable entered _ | current __._)@
regression

q-th variable not entered , Terminate
— procedure

—

FIGURE 1. BASIC STEPWISE APPROACH

Regression Analysis for Data Centered
about the Mean

Assume that the observed response variable Yi0 is to be estimated by
the model:

.+b Z . (39)

c
= + + + ..
Yi b0 bi Zii b2 ZZi p pi

where i=1, 2, ..., n. This model is rewritten as:

C —— — — —
Yi = b0+ b1 Z i+ (b1 Z —b1 Zi) +b2 ZZi+ (b2 22 —bz Z2) (40)

1 i

NI

+ ...+ b Z  + (b -b Z)
p b1 P P p P
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Regrouping the terms in equation (40), we obtain the following equation:

C — —— —
= + + + ...+ + -
Y = (by+b Z +b,Z, b Z )b (2, ~Z)

+ -Z )+ -Z
b2 (Z2i Zz) ...+-bp (zpi Zp)

If we let:

2 = Zy; - 2y

Zo; = Zgi 2y

Zpi = Ppi T zp

by = b+ b, 21+ b, ‘2+. . +bp—p

Then equation (41) can be written as:

c
= p' + + + +
Yi b0 bizii bzzz. ... *hb =z

i p pi

At this point the input data matrix of observations appears as
Table 1.

TABLE I. INPUT DATA CENTERED ABOUT MEAN

(41)

(42)

(43)

shown in

214 Zoi Z i i
— _ — ——
Z -2y |2y -7, Zy-Z, | Y]-%
7. -7 z_ -7 7 Yo - ¥
12~ %4 22 ~ “2 p2 ~ “p 2
Z. -7 z -7 Z -7 Y- 3
in~ “1 2n 2 pn  “p n
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The sample estimates b', b e bp are obtained by minimizing the

1’ 72"
weighted sum of squares of deviations between the observed and predicted
response values. Since obgservations of the response are assumed to have
equal reliability, unit weighting factors are used. The minimizing function is
then of the form:

n c. 2
M= = (Yf—Yi) (44)

i=1

The requirement for M a minimum yields the following normal equations:

oM
—_— =9
t
aby
oM
— =0
ab,
M _ ' (45)
ab
P

Note the exact form of the first normal equation obtained by the indicated
partial differentiation:

i

n
oM o ' =
[ z (Yi bO b1z -b Zog T -bp zpi):l (-1) =0

e .
8b0 =1 1i 2
n n n n
o
= - Y, +nb +b, = z, 6 +b Z z .+ +b = z .=
=1 i 0 1i=1 i1 2i=1 2i pi=1 pi
= -nY + nb! + nb, z, + Z, ¥ ...+ z_ =
ny nbo n 1z1 nb2 z2 nbp zp 0
=-Y+b+b,z, +b_z_ +...+b z_ =
Y b0 b1 z1 b2 z, bp zp 0 (46)
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But:

n n
z,= T = = (2,,-2Z))
T =%y .
n n
-7 -7 + -7
_ 2y m2) v (Zyy -2 (Zin =%y
n
n ———
= ZJ Z1 - nZ1 =0 , (47)
i=1
n n
and the same holds for 22, 23, cee, Ep. Thus, equation (46) becomes:
1 = Vv
by=Y . (48)
Substituting equation (48) into equation (42), the constant term b 0 in
equation (39) is given by:
=Y-b Z -b 7 - -b Z . 49)
by=Y-b, Z -b,2,-... prp ' (
A similar substitution in equation (43) yields:
Y. =Y+b,z, +b_z,. + ...+b (50)
i 1%157 P %9y T o0 T Pp Py

This is an alternate form to equation (39) and we have to estimate one less
parameter since equations (48) and (49) hold regardless of the values for
b 1’ b2, cee, bp in equation (46). The remaining normal equations are given

by:
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n
oM _
ob, = [zii (y; =By 245 ~ Py Zy; b Zpl)]
1 i=1
n
oM
- = Z z_ . (y.-b,z .-b_ z,.-...-Db
8b2 =1 [21 i 1711 2 721 p
n
oM
- = =z |z . (y.-b,z, -b_z_, - -b z
abp =1 [p i 171 2721 p
Let:
n n _ _ I
= = > - -
Sy= % 2 =% (Zy Zp) (Zg =29 9
i=1 i=1
n n _ 0 —
Sy = Z IV T ? (ZIi - ZI) (Yi -Y) I
i=1 i=1
n n
S. =% =z (Y -9 (¥ -9
vy 2, ivi, i i
i=1 i=1

Then the normal equations (51) can be written as:

+ + + =
bisle ... *b S S

11" "2 712 p-ip 1Y

+ + + =
b1821 b2822 bpSZp SZY

bS.+b S +.,.+b S =8
pi 2 p2 pp pY

24
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. .,p for each
-.P  (52)
.,p (53)

(54)
(55)



The solution of equations (55) for the b's yields:

M _T ’_— _1 — —
by 511 Sig +-- sip Siy
by 1= [S21  Saz - Syp Sov
b S S S S 56
p pi p2 ppP pY (56)

The estimate of the standard deviation of the response variable is
obtained from the residual deviations and is given by:

1/2
n

o =| = (Y°-Y)
. 1 1
i=1

2 (57)

n-d

It can be shown [7] that the standard errors of the estimated partial
regression coefficients given by equations (56) are given by:

— — —
a, [¢]
b Neyy
1
°b, - g S22 (58)
Y
a. C
b
P PP

where the c's are elements in the inverse of the S matrix in equations (56).

The standard error of the term bb = Y in the regression equation is
given by:

o, = o / ~Nn . (59)
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Confidence intervals [ 8] for the estimated coefficients are obtained from:
b'_ |
0 [0

by %

b2 + 6 o, (60)

bp
S I
The specific value to use for 6 can be obtained from a '"t'" table containing the
percentiles of the 't" distribution. It is dependent on the number of degrees of
freedom (n - d) and the particular confidence limits selected. If 95 percent
confidence limits are selected, then the confidence intervals given by equation
(60) can be interpreted as follows. If the experiment is repeated with another
set of data, then another set of limits would be obtained. Continuing the process
in this manner, then 95 percent of the limits obtained would cover the particular
coefficient,.

Centering the input data about the mean as shown in Table I reduces the
absolute size of the numbers entering the computations. Since the centered
data are required in obtaining the linear correlation matrix, no additional
computations are required that would not otherwise be available.

Regression Analysis for Data
in Correlation Form

The regression analysis can be transformed into a form which involves
linear correlations [8]. This is accomplished by making the following trans-
formations on the centered data of Table I,

v, = (Yf-?) / NS

YY
243 = (By; = 2 /NSy (61)

Zg; = (Zg; = Z,)/ NS,

z . =(Z  -Z)/NS
pi pi p pp
26



The same transformations on the dependent and independent variables in the
model given by equation (50) yields the following model:

~C ~ ~ ~
Ns__=b +b N Fouotb N
Vi NSyy TP NS 4243t PyNSy5 2o PV Bop Zpi - (62)
Or:
5¢=a 2, . +a_ 2z + +a z (63)
Vi~ %1% 7 %o %47 p pi
where
o — b it
i 1 SYY
L o= 2z
2 2 [Syy (64)
S
a =Db EEB
PP Pyy
The new coefficients Qs Ay voes ozp are to be estimated from the
transformed data y., z,., Z.., ..., z_.. The minimizing function is:
i’ 711’ T2i pi
n
~ ~C, 2
v= Z (y,-y.) (65)
. i i
i=1
The normal equations are:
1
v _
da, (66)
oV _
oo 0
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Evaluation of these equations yields:

..,p for each J

v ; FZ v.- a.z, -a_z
o, .= %1 Vi 1%14i 7 %2 %4
1 i=1
T
av ~ ~ ~ ~
v, - = |z Oyt gz -y g,
2 =1 |
n
BV — ~ ~ ~ ~
pa. - T | Zpi T g Byt ¥y By
P i=1
Let:
n
SIJ = Z) 2y 235 1 =1,2,
i=1
n
SIY = Z in yi B I = 1’ 2’ ,p
i=1
Then equations (67) can be written as:

@81t %5, @5 = Siy
~ + ~ v + ~ = ~
@y Sg1 % 5y %5 59 = Say

@,5 .+ a 8§ +a S =8
1%pi T %2%p2t - p pp DY

28

zZ )|l =0
pi
z )=o0
pi
(67)
Zpi) =0
=1,2,...,p (68)
(69)
(70)



The solution for the a's becomes:

T
@
1

o
b

o et ——

Also:

8, Sip - s1p S,y
8, 8, .- s2p S,v
S S ... 8 S . (71)
pi p2 pp_} | PY

II'YYy

= (2. -Z) (Y - 79)
I i

i=1

(72)

B n — 2 n o
/z (Zy - 20" = (Y, =

i=1 i=1

IY

i

(73)
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Thus, the S elements of equations (71) are the linear correlation coefficients
for the independent variables and the response. Equations (71) can then be
written as:

T [ry i m [ e |
1 11 12 °°° “1p 1Y
% To1 Tog =+ Top| |Toy
o r r ... 7T T (74)
Lp pi p2 pp pY

The constant term is obtained by solving equations (64) for bi’ b2, v bp

and substituting in equation (49):

- - YY =
b =Y-a, [+~ Z,-a, [T Z,-...-C Z_ (75)
0 1./ 844 1772 [s,, 2 p 5, P

The estimate of the standard deviation of the transformed response
variable is given by:

n o ~c2
z (y.-y.) (76)
. i i

8_' _ i=1

Y n-d

The standard errors of the new regression coefficients are given by:

ozi 11
“ e,,

14
K"Q
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where the ¢'s are elements in the inverse of the r matrix in equation (74).
The standard error of the term bb = Y is obtained by first writing equation

(85), which appears later in the discussion, as:

o, = NS o, . (78)

Y YY Y

Using this result in equation (59), we see that:

o, = ¥y (79)
0 JE

This equation is necessary if the input data are in correlation form. Equation
(59), however, is sufficient when the input data are centered about the mean.

Alternate Form for the Standard Deviations of the
Estimated Partial Regression Coefficients

The standard errors of the estimated partial regression coefficients

as given by equations (58) can be expressed in another form. Equation (76)
is first written as:

~ ~C.2 ~ ~C, 2 ~ ~C, 2
- + - +...+ -
2 _ vy v+ 3y -y ¥y -y (80)
Y n-d

Substituting z 1i° Zoj’ +*

equation (80) and ;i of equations (61) in equation (80) we see that:

- ;pi of equations (61) in (63) and the result in
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o = = —
2 _ _1 (Y, - Y) ) @ (Z zi)_ O‘z(zz1"zz)- e (Z 1-zp)
Y nod VByy V811 VS39 NSpp
0 — _ _ 2
. (YZ—Y) ) ai(ziz-zi)_ az(zzz-zz)_ ) o (ZpZ-ZE)
NS NS NS ) NS
Svy 11 22 Pp
o — _ 2
. . (Y_-Y) ) a(Z ~-2) i aZ(ZZH—Zz)_ ] ap(zpn- zp)
Svy et VS22 NS
(81)

Substituting equation (64) for the standard partial regression coefficients in
equation (81) and rearranging the equation, we find:

2
~2 _ 1 ) 1 o F_ A 7o _ >
crY— n-d s |:(Y1 Y) b1(Z11 Zi) b2(Z21 Zz) bp(Zp1 Zp)}

YY
2
i 0 = = = =
+ S [(YZ_Y)_bi (Ziz—zi)—bz(zzz- ZZ)- —bp(sz - Zp):l
YY
2
1 o = — — _
+ ... T S [(Yn-Y) —bi(Zin— Zl)_bz(ZZn_ Zz)—... -bp(an—Zp):’
YY
(82)
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Then, by substituting (Yic - S_{) as obtained from equation (50) in equation

(82), the following equation is obtained:

2
32=_1— [:(Yo—i)_(Yi_‘?ﬂ

2
+ (YO—S—{)—(YC—S_()]
Y (n-4d) SYY 1 “ 2 2

2
+ ...+ [(YZ—S_()-(YE-S_()]

1 n o c, 2
= =z (Y, -Y.))

(n-d) SYY =g b i (83)
But from equation (57), equation (83) can be written as:

~2 2

oy = UY/SYY . (84)
Or:

o, = oy / \/SYY . (85)

This equation gives the relation between the response variable and the transformed
response variable.

This result can be substituted in equation (77) for a typical j-th

coefficient:
y
o, = N cjj . (86)
: NS
J YY

Since ozj is a linear function of bj’ then the variance in ozj can be written as:

2
2 2 (2% 2 { 5y
Oy "bj o )~ °% \'S5 . (87)

j j YY

R
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By substituting o, from equation (87) in equation (86), the following
i
equation is obtained for the standard error of a typical j-th partial regression
coefficient:

a.
Y e
= c.. . 88
%.” S ij (88)
j YY

Equation (88) is used in place of equation (58) when the regression analysis
has been transformed into the form involving correlations (input data in
correlation form) wherein the inverse elements of the S matrix are not

available,

Alternate Form for the Standard Deviation
of the Response Variable

The residual sum of squares can be written as (see Reference 5):

n o] n o =2 n =, 2

5 (Y -v9%= =z x2-9%- = x°-D- (89)
. 1 1 . 1 . 1

i=1 i=1 i=1

That is, the residual sum of squares is equal to the total sum of squares about
the mean minus the sum of squares due to regression. But from the definition
of the multiple correlation coefficient:

n — n _ 9
s ¥°-¥ = =z (¥*-9?% R . (90)
=1 i =1 i Y.12...p

Substituting equation (90) in equation (89), we find:
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@

n n p—
= (¥°-v%92%= = (v°-1? |1 - Rg?
=1 1 i =1 1 Y. 12...p

2
S 1 -R
YY [ Y. 12...p]. (91)

Then by substituting equation (91) in equation (57):

1
2 2
o = SYYA(1;_RY.12...p) (92)
Y n-d

This expression enables the estimate of the standard deviation of the response
variable to be expressed in a more convenient computational form. Its use has
an advantage over equation (57) when the Gaussian Elimination Procedure is
used to solve the normal equations. This is discussed later on in this

report.

Partial Correlation Coefficients

The partial correlation coefficient of the variable Zq (not in the regres-

sion) with the response Y — given that Z1, Zz, ..

This statistic is used in the step-

- Zp are already in the
regression — is denoted as qu . 12...p
wise procedure to determine which of several variables not in the regression
should be considered for entry into the model at a given step. The variable
considered for entry is the one whose partial correlation with the response is
highest.

Mathematically, is found by determining the simple linear

P qQY . 12...p
correlation between the residuals from the regression:

c
= + + + +
Yi b0 b1 Z1i b2 ZZi bpzpi (93)

and the residuals from the regression:
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C
Zes BO 61 Z,. 62 Zo * en Gp Z

Let the residuals from these regressions be denoted as:

VR,. =Y. -Y,.
1i i i

VR_. =2 , -7,
21 qi qi
Then:

n
Z (VR
5 _ i=1
n n
qY . 12...p /z VR2. 2 VRz.
A 1i 2i
i=1 i=1

1i VRzi)

(94)

(95)

(96)

An alternate form for the partial correlation coefficient involves the

linear correlation coefficients. Let:

_ — i
11 Y12 0 Tip Tig T1v | [C11 C12
Ta1 Fag =+o Top Taq T2y €21 a2
r r ce e r r r =]cC C

pl p2 pp pd  py pl p2
r r PR r r r C C

qi q2 ap Qq qY qi q2
Ty1 y2 o0 fyp  Tvq Tyy| [®vtr  Cv2
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CZp

pp

c
ap

Yp

iq

czq

c
aq

Yq

1Y

2Y

(97)



Then from Reference 9:

-C

= q¥ (98)

p
qY . 12...p ’\/C———

aq °YY

Other partial correlation coefficients can be determined having once
determined the inverse equation (97). For example:

iy

Piv.23...qp o o—

11 vy

(99)

Significance of the Estimated Regression Equation

The significance associated with an estimated regression equation can
be considered from an analysis of variance viewpoint. If the estimated
regression equation is of the form given by equation (50), then the analysis
of variance is summarized in Table II.

'TABLE II. ANALYSIS OF VARIANCE

~ Type
df Variation Ss B - MS F Value
n —
n-1| Total s, == (Y12
YY . i
i=1
n S
n-d | Residual S(RES) = = (Y(.)—Y.C)2 M(RES) = S(RES)
. i 1 n-d
i=1
. _ h c =2 _ S(REG) M(REQG)
d - 1| Regression | S(REG) = 131 (Yi-Y) M(REG) = a1 M(RES)
df = degrees of freedom
SS = sum of squares
MS = mean square = SS/df

= number of observations
number of independent variables

= p+1
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From equation (89), the total sum of squares can be written as:

n ~— n n _
-9 = 2 ¥°-v9H%+ & ¥*-1?
. 1 . 1 1 . 1
i=1 i=1 i=1
S. = S(RES)+ S(RE
4y = S(RES)}* S(REG) (100)

That is, the total sum of squares about the mean is equal to the sum of squares
about regression (residual) plus the sum of squares due to regression. This
shows that a way of assessing how useful the regression equation will be for
prediction purposes is to see how much of SYY is given by S(RES) and how

much is given by S(REG). If S(RES) = 0, then the actual observations are
described exactly by the regression equation (50). .The ratio defined by:

RY. 19...p = S(REG)/SYY (101)

is known as the multiple correlation coefficient and measures the closeness with
which the regression equation describes the observed data.

Another useful ratio in regression analysis is given by the following
equation (Reference 5):
S(REG) /(d-1)
S(RES) /(n-d) ° (102)

It follows an F distribution with (d-1) and (n-d) degrees of freedom. This
quantity is used to determine the statistical significance of the regression
equation under consideration by comparing it with the appropriate F table
value. For example, determine the 95-percent percentage points F[ (d-1),
(n-d), 0.95] in the appropriate F table. If the computed F value given by
equation (102) is greater than the table value, then the regression equation
is statistically significant. An alternate expression for equation (102) can be
obtained by substituting the residual sum of squares as given by equation (91)
into equation (100) to obtain:

F

_ 2
S(REG) = SYY SYY (1~ RY. 19, . .p) . (103)
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Substituting equation (91) and equation (103) into equation (102), we see that:

2
R (n-d)
po X 12.2..p ( 104)
(1- RY. 12. ..p) (d-1)

This equation is a more convenient computational form for the F quantity when
performing a stepwise regression analysis. This is because the quantity

2
(4-By 1a...
later on in this report.

p) is available at a given step in the analysis. This is discussed

It can be shown (Reference 10, Chapter 14), that the F distribution with
1 and (n-d) degrees of freedom is equivalent to the t? distribution with (n-d)
degrees of freedom. That is,

F[1, (n-d) ] = t [n-d] . (105)

The significance of the individual partial regression coefficients (b 1’ bz, cen ,bp)

is determined from(Reference 10, Chapter 2()

ti = bi/ crbi (106)

which is distributed as t with (n-d) degrees of freedom. By virtue of
equation (105), this can be written as:

F. = biz/ 02 (107)

with 1 and (n-d) degrees of freedom. The F value is denoted as Fi (OUT) to

indicate its use in the stepwise procedure for leaving an insignificant variable
out of the regression equation. If the computed Fi (OUT) value given by

equation (107) is greater than the appropriate table value, then the i-th
coefficient is statistically significant. If the regression analysis has been
transformed into the form involving correlations (input data in correlation
form), then the appropriate form of equation (107) to useis obtained by
substituting equation (92) in equation (88) to obtain for o
i
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2 =
S -
. - | Xx (1 - Ry 12...p %ii .
b, n-d S, (108)
1 11

The partial regression coefficients bi can be expressed in terms of the stand-
ard partial regression coefficients ozi from equations (64). This result and

equation (108) are substituted in equation (107) to obtain:

oziz (n-d)
F, = . (109)
i(ouT) S .(1-R )
ii Y.12...p

This is the form of equation (107) to use when the input data are in correlation
form.

It was pointed out earlier in this report that of several variables not
in the regression, the variable considered for entry is the one whose partial
correlation with the response is highest. If this is determined to be
qu. 12...p (variable Zq not in the regression), then the significance of

qu. 12...p is determined from (Reference 10):

N (n-d)

qu.iz...p

Ji- 2

qu.iZ...p

¢ = (110)

which is distributed as t with (n-d) degrees of freedom and where d is the
total number of variables. From equation (105) this can be written as

2 ~
F _ qu.iz p(n—d) (111)
q(IN) {2
qu. 12 P
with 1 and (n-d) degrees of freedom. The F value is denoted as Fq (IN) to

indicate its use in the stepwise procedure for entering a significant variable
into the regression equation. If the computed Fq (IN) value given by equation

(111) is greater than the appropriate table value, then the coefficient corre-
sponding to variable Zq is statistically significant. In the stepwise process
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the coefficient corresponding to the smallest of Fi (OUT) is tested for deletion

before a new variable is considered for entry. The coefficient corresponding

to the largest of F

The Gaussian Elimination Method as Applied to a
Stepwise Regression Analysis

The normal equations given by equations (7 0) are a system of
simultaneous linear algebraic equations in «

can be written as:

Or in matrix notation:

r Q@ =T
pp p pY
where ——
%y
ap = ozz (114)
o
| P

q(IN) is tested for entry after the deletion test.

=)

These equations

(112)

(113)

(115)

41



— _
I'11 1‘12 PPN r1p
;‘ = r r cee r
1 22 2
Pp 2 <P (116)
Ir I PP r
pl "p2 pp

One method of solving the system given by equations (112) involves
linear transformations and is referred to as the Gaussian Elimination Method
[11, 12]. The inverse of the linear correlation matrix f'pp and the solution

vector Ezp can be obtained from the method. One by-product as applied to the

regression analysis is the availability of partial correlation coefficients for
the variables not in the regression. Another advantage involves the estimate
of the standard deviation of the response variable. Normally this estimate
is computed from the summation given by equation (57). A more convenient
computational form is given by equation (92). The quantity (1 - R% 12 p)

in equation (92) for the p variables in the regression is easily obtained when
the Gaussian Elimination Method is used.

Basically the underlying principle of the method involves two elementary
operations:

(1) multiplication (or division) of any equation (any row) by a
nonzero scalar.

(2) addition of one equation (one row) to another,

When these operations are performed on the system of equations (112), a system
is obtained which is equivalent to the original system. The basic approach
is illustrated by augmenting the correlation matrix fpp as follows:

[—r“ P T
- _|r r ... T r 0 1 .. O
rYY 21 22 2p 2Y
. (117)
r r r r 0 0 A |
pi p2 PP pY
_fgi rY2 rYp rYY 0 0 O‘4
(p+ 1) x(p+ 1) (p+1)xp
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By performing the operations (1) and (2) on rows of this matrix, the
following arrangement can eventually be obtained:

1 0 0 041 011 012 5
ip
-1 o 1 ... o o c c. ... C
rYY 2 21 22 . 2p
o 0 ... 1 S 5. ... &
p pi p2 pPp
2
0 o ... 0 (1-RY 12..p) -oz1 -ozz -
(pt1) x (p+1) (p+1) xp
(118)

It is seen that appropriate row operations on the -fpp matrix to the left of the

line in equation (117) produces the identity matrix. The same row operations
performed on the identity matrix to the right of the line in equation (117)
produces the inverse of the rpp matrix. The same row operations on the

appropriate elements of the (p+ 1) -th column to the left of tge line in equation

(117) produces the solution vector ap and the quantity (1 - RY 12 p) .

Elements of the solution vector &p are actually obtained one at a time.

This amounts to entering the variables into the regression equation one at a
time. Thus, the Gaussian Elimination Method is ideally suited for a stepwise
regression analysis where all p of the independent variables may not be
desired in the final regression equation. At a given step in the method (before
equation (118) is obtained), the array formed by the first p rows and columns
contains nonzero off-diagonal elements. These nonzero elements indicate

the variables not in the regression. The partial correlation coefficients of the
variables, not in regression, with the response can be easily obtained using
the appropriate diagonal element in this p x p matrix, the diagonal element

in the ( p+1) x (p+ 1) position, and the appropriate element in the (p+1) -th
column. This is clarified in the example in Appendix C. It is pointed out to
indicate the availability of the partial correlation coefficient required in
equation (111) for determining Fq (IN) " This equation provides the test for

determining the variable to next enter the regression and is discussed further
in the second example.
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The following simple example illustrates the basic principles of the
method. Assume the normal equations are given by:

11 14 1 1Y
r r o i r (119)
41 44 4 4Y
The augmented matrix similar to equation (117) is:
T14 g Ty |10
r,.=|r r r 0 1 (120)

The nondiagonal elements of the first and second columns must be zeroed out.
This is accomplished by the following series of operations. Divide the first row
by r (1’ multiply the resulting row by (-r 4 1) , and add the result to the second

row (zeros second element of first column) :

p—
~

t = 1 = 1 = | B—
. SPRL eI iy~ Ty 1y cy =1y €14
r Ir r r
- 41714 4171y | ~ ~
1 = 1 = U L~ S - = 1 1= I
Tag T 0 TiaT Tay T 4y Tay r Cyy =Ty Tyy Ch,=t
11 11
Ty1 Tya Tyy 0 0
(121)

Multiply the first row of equation (121) by (—rY 1) and add the resulting row to

the third row (zeros third element of first column):
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- .
1 1 S g}
! Tia iy €11 €14
= ' 1 ] o)
T35 =|0 Ta4 Tay €41 €44
T r I r
v1¥14 vifiy |~ ~
A = - 1 = — ———— t = ] =
O T4 Tyg r YY 'yY© = Y= Tay T1q Cyy~0
11 11 ]
e
(122)

Divide second row of equation (122) by rll 4 multiply the resulting row

by (-r'14) , and add the result to the first row (zeros first element of second

column) : —
' ' r o Y R
~ T1afay |~ ~ T14%1 o~ TT14%a4
e A el o
Y44 Y44 Ta4
S = 0 "M =t ' St =4 1 St =4t 1
Ts3 L r =Ty ) = Thy Cy=Ca Ty
| 1 NY N'
0 Ty, vy °y1 ®y4
R ————

(123)

Multiply the second row of equation (123) by ( 4:) and add the result to

_r'Y’
the third row (zeros third element of second column):

’—_ ~ ~
10 iy 31 G
Ty = |0 1 Ty oy Yy
o 0 rﬁzrﬁ'i‘%—rﬁ Cy1=%y 'riga_i €=ty " ﬁ{%ﬁ’ﬁ_
T 44 44 44

(124)
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It can be verified that equation (124) is equivalent to:

t 0 %4 €11 Ci4
—'V ~ ~
r ={0 1 o c c44
4 41
33 9 (125)
0 0 (1—RY.14) -oz1 -a4
where:
r |t 5 s
Ty1 14 11 14
= (126)
a1 Taa €41 Ca4

It should be pointed out that the method is reversible. That is, the

- first and third elements of the fifth column in equation (124) can be zeroed

out to obtain equation (122). This is especially useful for variable deletion
purposes when it is desired to leave an insignificant variable out of the
regression equation. The variable deletion is accomplished by zeroing the
appropriate elements in the column to the right of the line. The column
selected corresponds to the particular variable being deleted. This is
discussed further in the example in Appendix C.

It is thus seen that zeroing a column in the r matrix results in a
regression equation with one more variable. Similarly, zeroing a column
in the ¢ matrix results in a regression equation with one less variable. At a
given step, the last column of the r matrix contains the regression coefficients
for the particular variables in the regression. The ¢ matrix contains the in-
verse of that part of the r matrix corresponding to the variables in the
regression at a given step. Specific details in the development of the complete
stepwise procedure are given in Appendix C.
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Computational Algorithm in the General
Stepwise Application

Variable Entry Algorithm. Succeeding elements of the r matrix for a
variable being entered or deleted from the regression can be generated from
general algorithms. Let r!. and ci'j denote elements of the current matrix.

If K denotes the independent variable being entered, then the new r!! elements
can be obtained from the following equations: 1

1t = 1 1 = ci=i=K
I‘KK 1:.KK/I'KK 1:1=]
elements of

K-th row
= pt 1 = i #
'K; rK]/ Tkgi1TK I FK (127)
" = 1 - 1 1 ' . all Othel‘
r1] r1] (riK rKj)/ KK’ elements

The new cl'J' elements can be obtained from:

e = / ! = =
°kk - °kx’ Tk 117K elements of
/ K~th row
alt = ar [] — i
°kj - °kj "kKk’ K, § #K (128)
Siro= S _ rOR Y pr . all other
013 013 (r1K cK ) KK elements

Variable Deletion Algorithm. An independent variable can be deleted
from the regression using somewhat similar algorithms. Assume the current
matrix consists of the ri! and 8;5 elements. I the K-th independent variable is

to be deleted, then the new F;J" elements can be obtained from:
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rnv = I‘"K/C” ;i=j=K
L elements of

K-th row
1"t = ptt "L = £ K
rKJ rK /cKK ;i=K, j #K (129
1y = p1r _ 1 a1t 1" all other
rij I‘1J (clK rK Ve °kK elements

The new EI'J" elements can be obtained from:

T = ot /ot = ci= 3=
CKK c cKK 1;i=j=K
elements of
) K-th row (130)
o = on " = #
oy = e /CKK ;i=K, j#K
all other
S = A TERST] tt
cl] C1] (c; iK cK Ve °KK elements

The algorithms given by equations (127) through (130) result from a generali-
zation of the equations in the Gaussian Elimination Procedure used for solving

the normal equations.

Compact Computational Algorithm for Variable Entry and Deletion.
The order of the augmented matrix at a given stepis (p+1) x (2p+1). Itis
noted, however, that p of the columns contain zeros and the unity element.
For every column zeroed in the r matrix, the corresponding column in the
¢ matrix contains nonzero elements. The nonzero columns of the ¢ matrix
can be placed in the r positions corresponding to the column in the r matrix
that is zeroed out. If this is done from the first step on, then an r matrix is
set up that can be computed using a compact computational algorithm since
the other elements are zero and unity and can be generated as needed. For
example, in equation C-2 of Appendix C, the elements in the 3’1 4 column

would be placed in the corresponding positions in the r{ 4 column. The i-th

element 51 4 would then be designated as ri' 4 The complete r' matrix for the
variable Z 4 in the regression would then be given by:
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(131)

The r{, elements of this matrix can be computed from the following algorithms

with K = 4.

1
Tk

1th;i=j=k

rKj

- ik

/T

/

_(r

TkK

iK

;i=K, j #K

rKj) /rKK’

i #K, j=K

(intersection of row K and
column K)

(other elements of row K)

(132)

(other elements of column K)

i1 #K, j#£K

(all others)
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At a given step a succeeding matrix (that is, one obtained by entering or
deleting a variable) can be generated using expressions analogous to equations
(132). The subscript K corresponds to the variable being entered or deleted.
Note, however, that from the first step on, the ¢ elements must be designated
as r elements in the manner discussed in the previous example. The algorithm
given by equation (132) for entering or deleting a variable gives the same
results as equations (127) and (128) for variable entry and equations (129)
and (130) for variable deletion. The obvious advantage in using equations
(132) is that it involves handling a (p+1) x (p+1) matrix rather than a (p+1)

x (2p+1) augmented matrix.

RESULTS FROM THE APOLLO-SATURN AS-501
VEHICLE FLIGHT TEST

Introduction

The Apollo-Saturn AS-501 vehicle was launched at 0700:01 Eastern
Standard Time on November 9, 1967, from KSC Launch Complex 39, Pad A.
This section presents results from application of the TEMS Method and the
stepwise regression procedure to tracking data obtained from this launch.
Tracking data from seven C-band radars providing coverage on the first burn
flight phase (launch to parking orbit insertion) and four providing coverage on
the second burn flight phase (S-IVB reignition to S-IVB/CSM separation) were
used in th® reduction. The postflight reference trajectory used as the standard
is presented in Reference 13.

The relation between the vehicle trajectory for the first burn flight
phase and the various C-band radar tracking sites is shown in Figure 2. The
overall first burn tracking data utilization and significant event times are also
shown in this figure. The second burn flight phase summary with the overall
tracking data utilization and significant event times is shown in Figure 3. The
specific tracking data utilization for the first and second burn flight phases is
shown in Figures 4 and 5. These two figures show the individual time spans
of usable data as determined from an edit pass through the TEMS program.
Location data for the launch site and the various tracking stations are given in
Table III. The minimum elevation angles corresponding to tracking coverage
at the begin and end times are given in Table IV,
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TABLE III. LOCATION OF LAUNCH SITE AND C-BAND TRACKING

RADARS USED IN TEMS AS-501 REDUCTION

Latitude, Longitude,
Site deg deg
Launch Complex - 39, 28. 608422 80.604133
Pad A
Patrick Radar (0.18) 28. 226553 80. 599293
Merritt Island
Radar (19. 18) 28.424862 80.664404
Grand Bahama
Radar (3.18) 26. 636350 78.267708
Grand Turk
_Radar (7.18) 21.462890 71.132114
67.16 (FPS-16) 32.348103 64. 653801
67.18 (FPQ-6) 32. 347964 64.653742
Cape Kennedy (1. 16) 28.481766 80. 576515
Antigua Radar
(91.18) 17. 144032 61.

792859

a. Elevation above the Fischer Ellipsoid
b. Elevation of the C-band radar antenna above the Fischer Ellipsoid
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TABLE 1V, ELEVATION ANGLES AT BEGIN AND END TIMES
FOR FIRST AND SECOND BURN DATA ON AS-501

First Burn Second Burn
Radar Time, sec E°, deg Time, sec E°, deg
0.18 35. 2.53
407. 7.38
19. 18 22. 2.07 11338. 2.61
257, 19.63 11840. 2.85
3.18 99. 2.89 11364. 1.31
506. 2.75 11705. 10. 07
7.18 215, 0.6
567. 0.9
67. 16 379. 8.29
675. 7.25
67.18 316. 3.87 11521, 1.61
614, 18.25 12386. 4,18
1.16 26. 4.27
309. 15. 29
91,18 _ _ 11684. 5.69
12380. 9. 26

Detailed information on the IBM 7094 computer program for application
of the TEMS method is given in Appendix D. The computer program for
application of the stepwise regression analysis procedures developed earlier
in this report is discussed in Appendix E. The utilization of these two pro-
grams on the AS-501 first and second burn data is illustrated in Figure 6.
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It should be pointed out that a certain amount of caution has been used
in the interpretation and analysis of the stepwise regression results. The
stepwise regression results in Appendix F indicate several cases where the

Oy curve fit value is not improved significantly by the introduction of additional
variables into the regression. The FIN and F oU

entry and deletion are also critical in the number of variables entered into the

T levels selected for variable
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regression model. A value of 3.5 for F_. . and F was arbitrarily selected

IN ouT
and used in obtaining the stepwise results in Appendix C. A higher value
would reduce the number of steps and result in a final regression model with
a lower number of variables. A rather critical examination of the stepwise
regression analysis results thus seems to be required in order to obtain
meaningful and useful information for input to the TEMS program.

Truncated Error Model Regression Analysis Results

The general approach for obtaining truncated error models to describe
the AS-501 range, azimuth, and elevation response variables is summarized
in the following guidelines:

(1) It was assumed that the survey terms, the rate bias term, and the
azimuth and elevation velocity lag terms, were not essential in
obtaining truncated error models to describe the response variables.

(2) The first two variables entered in the stepwise regression
(excluding those left out under the above assumption) were
selected for consideration in the final TEMS error model.

(3) A third variable was considered if an adequate description of
the response variable was not obtained with the first two or if
a constraining condition required an additional variable in the
model,

This approach actually results in entering the most significant variables into

the error model. It should be pointed out that the third variable selected

in guideline (3) often involved selecting one of two variables that represented
borderline cases so far as the order of entry in the stepwise regression was

concerned; i.e., the two variables had p2 values nearly equal.

The AS-501 first and second burn truncated error model results obtained
using guidelines (1) - (3) are presented in Tables V through VIII. Plots of
the observed and computed response variables and the least squares residuals
for the truncated models are given in Appendix F. This appendix also includes
a summary of the stepwise regression analysis results. Coefficient correlations
from the TEMS program for the truncated models are also presented. The
average standard deviations of the least squares residuals in Tables V and VI
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TABLE V. TRUNCATED RADAR ERROR MODEL MULTIPLE REGRESSION
RESULTS FOR FIRST BURN DATA ON AS-501 VEHICLE FLIGHT TEST

89

Ridur Coefficient ¢ c o No. of
VR VA VE Data
Cy C, Cy Cy Dy D, Dy Dy Dy Fy F3 m Deg Deg Points
0. 18 -19.92 —_— 0. 0091 23.71 0. 0087 0.6915 P -0.0202 — 0.0194 0.1791 3.96 | 0.0082 0.0072 335
10, 18 ~-13. 11 —_—— 0.0055 | -36.03 0,72E-3 - 0.0697 1-0.0761 —_— 0. 0330 |-0.4390 5.23 | 0.0046 0. 0062 219
i 3.18 5.21 —_— 0. 0066 93.25 0. 0054 0.5517 e _ — -0.84E-3| 2.10 4.02 | 0.0027 0. 0055 395
| 7.18 ~12.28 —_— 0.0024 36.20 [-0.0176 |-2.84 _ ] — — | -0.0085 —_— 6.09 | 0,0038 0.0165 297
- 67.16 58. 47 -1, 14E-4 |-0. 0022 J— 0,34E-3| 0.1632 _ ] — 0, 0083 0.0073 | 0.2380 9.75 | 0.0097 0.0051 | 289
| ‘
! 67,13 34.34 -0, 97E-4 |-0. 0049 —_— 0. 0056 0.0192 —_— — | 0.0067 § 0.0021 -0, 0027 9.16 | 0. 0045 0. 0057 297
.16 i -36.91 | -0.59E-4 | 0.0171 | —— 0.0171 | 0.3386 _ -0.0177 —_— 0.0042 - 4.31 ! 0.0121 0.0106 225
J
Average ¢ | 6. 07 } 0. 0065 0. 0081‘)




TABLE VI, COEFFICIENT STANDARD DEVIATIONS FOR TRUNCATED RADAR ERROR
MODELS FOR FIRST BURN DATA ON AS-501 VEHICLE FLIGHT TEST

Radar 9K For Indicated Coefficient
Co | C, | C, | C, D, D, D; D; | Dy Fy " F; | Terms

0.18 0.84 —_— 0.25E-3 5.2t 0.54E-3 0.074 S — 0.0015 —_— 0.93E-3 | 0.100 ]
19.18 0.72 R 0.33E-3 3.75 | 0.0010 —_— 0. 0024 0.0016 | — 10.0010 0.050 8

3.18 0.36 U —n 0.11E-3 2.27 0.23E-3 0.086 0.24E-3| 0.173 7

7.18 0.95 ] —_— 0.30E-3 1.97 | 0.64E-3 | 0.971 0.61E-3 | 6
67.16 1.15 0.21E-5 0.09E-3 | —— 0.56E-3 ] 0.005 | —_— 0.48E-3 | 0.54E-3| 0.014 8
67.18 0.84 0.15E-5 0.10E-3| —— 0.46E-3 | 0.004 -_— | 0.43E-3 | 0.48E-3| 0.012 8

1.16 1.03 0.67E-5 0.89E-3 | —— 1.14E-3 | 0.073 —_— ‘ 0.0025 — | 1.57E-3 7

No.

Occur- 7 3 7 4 7 6 1 3 2 7 5

rences
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TABLE VII. TRUNCATED RADAR ERROR MODEL MULTIPLE REGRESSION RESULTS
FOR SECOND BURN DATA ONAS-501 VEHICLE FLIGHT TEST

Radar Coefficient No. o,
vR Ova yE Data
Cy C, C, Dy Dy Dy, Dy Fy Fy m Deg Deg Points
19. 1% -25.89 | -73E-5 -0.0059 |-0.86E-3 -0.0117 -0. 0223 — 0.0018. 0.4277 | 7.30 0. 0050 0.0073 492
3,138 8.46 | —— -0.0061 | 0.0091 0.2989 _ — -0, 0182 2.5233 | 7.16 0.0038 0. 0055 322
91,18 34.84 | -2.43E-5 ‘ 0.0043 { 0.0032 |  0.4009 —_— _— = -0.7E-4 ; -4,1971 | 2.22 0.0038 0.0059 | 684
| | .
67.18 8.83 | -2.87E-5 | -0.0011 | 0.0055 —_— —_— 0.0012  -0.0116 | —— | 7.28 0.0053 0. 0058 R64
Average ¢ 5.99 0.0045 0.0061
TABLE VIIl. COEFFICIENT STANDARD DEVIATIONS FOR TRUNCATED RADAR ERROR
MODELS FOR SECOND BURN DATA ON AS-501 VEHICLE FLIGHT TEST
Radar OK For Indicated Coefficient
CO C1 C2 DO 1)3 D7 Dg FO Fs Terms
19,18 0. 60 0.05E-5 0.52E-1 1] 0.33E-3 0. 057 0.0012 R 0.58E-3 0.157 b
3.13 0.29 I 0.55E-4 ] 0.35E-3 0.075 e - 0.36E-3 0.236 6
91. 13 0.35 0.02E-5 0.61E-4 [ 0, 18E-3 0. 201 —_— — 0.18E-3 0. 434 7
67.13 0.36 0.01E-5 0.43E-4 ] 0.24E-3 _— e 0.29E-3 0.27E-3 — 6
No.
Occur- 4 3 4 4 3 1 1 4 3
rences




indicate fairly close agreement with the accuracy estimates of 5 meters in

range and 0. 006 degrees in azimuth and elevation. The OVE value of 0, 0165

degrees in Table V for Radar 7. 18 probably results from roughness in the
data associated with the low elevation coverage (E° = 5.33°).

CONCLUSIONS

The TEMS Multiple Regression Analysis Method provides for a com-
prehensive evaluation of systematic errors in measurements obtained from
various tracking systems. The error model equations used in the develop-
ment of the method are for C-band radar tracking systems. It should be
noted, however, that the development for application to tracking systems
other than radars is analogous to that presented herein. Truncated tracker
error models for representing the systematic errors are established using
the TEMS method in conjunction with a stepwise regression procedure. The
stepwise procedure involves examining at every step the variables incorporated
into the error model in previous steps. A specific variable is deleted from
or entered into the model by using the Gaussian Elimination Method for solving
the linear system of normal equations. The procedure shows considerable
promise in solving the TEMS error model construction problem.

The approach given by guidelines (1) - (3) in the last section for
obtaining truncated error models to describe the systematic errors has
generally resulted in acceptable models for the AS-501 first and second burn
data. Guideline (2) uses the stepwise regression procedure to determine the
variables for consideration in the truncated TEMS error models. It is noted
that the average random errors remaining in the first and second burn residuals
for the truncated error models indicate fairly close agreement with the input
accuracy estimates of 5 meters in range, and 0. 006 degrees in azimuth and
elevation. The stepwise results on the AS-501 data indicate several cases
where the oy curve fit value is not improved significantly by the introduction of

additional variables into the regression. It appears that a rather critical
examination of results from applications of the stepwise regression procedure
is required in order to obtain meaningful and useful information for input to
the TEMS program.
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The scope of future work will be concerned with the reduction and
analysis of tracking data on each Saturn IB and Saturn V flight tests. A
comprehensive utilization of the stepwise regression analysis results will be
stressed in this work.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama, June 20, 1968
933-50-04-00-62
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APPENDIX A
THE C-BAND RADAR TRACKING SYSTEM ERROR MODELS

The Basic Error Models

The basic radar error model equations [ 2] in range, azimuth, and
elevation are given by:

Range .
AR=Cy+CyR+Cy3 R+ Czt+ Cy(-.022 cosec E)
X Y Z
ves(z) e (%) e (5)
(A-1)
Azimuth
AA=Dy+DyA +DgA +Djtan E + Dg sec E + Dy tan E sin A
. A . A
+ Dy tan E cos A + D, <s1nAcos )+D10 <_s_1_nA cos )
X Y
(A-2)

+ DIIA sec E

Elevation

AE = Fy+ F{E+ F3 E + Fy (-sin A) + Fg cos A

. 022 P -X tan E (A=3)
+F7|:<R sin E - 10 >cotanE]+F9< R2 >

- E .
+ Fio(_Y'_Rt?én_:'E—> + Fu <CO; ) + Fm E cos E
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In AR

64

The error model terms appearing in equations (A-1), (A-2), and
(A-3) are subject to specific physical interpretations. These interpretations
are listed below:

(1)

(2)

(3)

(4)

(5)

(6)

(2)
(3)
(4)

(5)

(6)

(7)

Cy - Zero set (bias) error which arises because of inaccuracies
in calibration.

C;R - Range is obtained by multiplying the measured quantity by
a scale factor. This is error due to error in the scale factor,

CZR - Error due to timing delays and is essentially the error in
station time clock.

Cst - Rate bias error due to linear drift of oscillator frequency
with time.

C4(-0.022 cosec E) - Error in correction made for tropospheric
refraction.

Cs(X/R), C¢(Y/R), C;(Z/R) - Survey errors in the radar site
location.

D, - Same interpretation as for C,.
DIA - Same interpretation for sz{.
D3A' - Error due to dynamic lag in azimuth serve system.

D; tan E - Error which accounts for the nonparallellism between
the elevation shaft and the plane of the azimuth table.

D¢ sec E - Error due to nonperpendicularity of the R-F axis
and elevation shaft.

D; tan E sin A, Dg tan E cos A - Errors in azimuth due to
azimuth plane tilt about orthogonal axes in the azimuth plane.

Dy(sin A cos A/X), Djo(-sin A cos A/Y) - Errors in azimuth
due to north and east components of survey error.



(8) Dy A sec E - Azimuth velocity lag.
In AE
(1) Fy - Same interpretation as for Cy.
(2) F,E - Same interpretation as for C,R.
(3) F3i§ - Error due to dynamic lag in elevation servo system.
(4) Fg(-sin A), Fgcos A - Error in elevation caused by azimuth

plane tilt - same interpretation as for D,;, Ds.

(58) Fy [(% —10“6> cotan E] - Error in correction made for

tropospheric refraction.

(6) TFy(-Xtan E/R?), F(-Y tan E/R?), F,(cos E/R), - Survey
errors in radar site location.

(7) Fy E cos E - Elevation velocity lag.

Derivation of Survey Error Terms in Range Error Model

The error model equations contain terms which can, theoretically, be
determined on the basis of physically established relationships. For example,
consider the survey error coefficients C5;, Cg, and Cq in the range error model
equation. Let C; denote the error in the X direction, Cg the error in Y direc-
tion, and C; the error in the Z direction. Let the correctly measured range
be given by:

1
Rm = (X2 + Y% + 72%)2 . (A-4)
If the radar site location is displaced by the distances AX, AY, and AZ in the
respective coordinates, then the range from the site location (X + AX, Y + AY,

Z + AZ) is given by:

R=[(X+AX)2 + (Y + AY)? + (Z+AZ)2]% . (A-5)
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Expanding (A-5):

R=[X+Y+ 722+ 2(XAX+YAY + Z AZ)

1
+ (AX? + AY? + AZYH)? (A-6)

For the application herein, the last three terms in equation (A-6) are small
compared to the terms (X% + Y2 + Z?) and 2(X AX + Y AY + Z AZ). Thus,
these terms can be neglected and equation (A-6) written as:

1 -
R= [X2+ Y2 +2%+ 2 (XAX + YAY + Z AZ)]? (A-7)

Expanding the right side of equation (A-7) in the binomial series and retaining
the first two terms yields:

XAX + YAY + Z AZ
< .
(X% + Y2 + 72)2 (A-8)

1
R=(X2+ Y2+ 27ZH)2 +

The error in R is then given by:

AR =R - R . (A-9)
m

Substituting equations (A-8) and (A-4) in (A-9):

X Y VA
= —_— B —_— — -
AR <R >AX (R >AY+<R >AZ (A-10)
m m m
where
AX=C5
AY = Cq
AZ=C7
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APPENDIX B

COORDINATE SYSTEM TRANSFORMATIONS

The reference trajectory used as the standard in the TEMS method is
in an earth-fixed plumbline coordinate system (Xe’ Ye, Ze) with origin at

the launch site. It is required to transform the (Xe, Ye’ Ze) reference

trajectory data into radar reference tracking parameters (Rr, Ar, Er) .

The radar measured tracking parameters can then be compared with the

radar reference tracking parameters to establish the tracking errors for the
particular system under consideration. There are two transformations required
before this comparison can be made. These are:

(1) Transformation of earth-fixed plumbline coordinates (Xe, Ye’ Ze)

of vehicle with origin at the launch site to earth-fixed plumbline coordinates
(Xes, Yes’ Zes) of vehicle with origin at the tracking site.

(2) Transformation of earth-fixed plumbline coordinate (Xe , Yes’ Zes)
of vehicle with origin at tracking site to spherical coordinates (Rr, Ar, Er) of
vehicle with origin at tracking site.

The first of these transformations for the i-th observation is given by
the following equation:

= =T -T-T= = = ,= . -

= + - F -
Xesi Kp @7 2p ML 2L KL (Xei Tor! ~ Tor (B-1)
where
X X
es e
X =Y (B-2) X =|Y (B-3)
es es e e
i i
Z Z
es e
i i
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-r in B_ ¢ K
si T os

—rL sin. BL cos KL T T
T = + - T = + , -
rOL rL cos BL hL (B-4) rOT I COS BT hT (B-5)
rL sin BL sin KL rT sin BT sin KT
i 0 K 1 0 0
sin KL cos L
K = —_ Y = - -3 B_
KL 0 1 0 (B-6) <I>L 0 -cos <I>L sin <I>L (B-7)
-CoSs KL 0 sin KL 0 s1n<I>L ~-Cos <I>L
sin AL -COS }\L 0 sin KT 0 cos KT
}\L =| cos AL sin }\L 0 (B-8) KT = 0 1 0 (B-9)
0 0 1 -CoSs KT 0 sin KT
1 0 0 sin }\T -Ccos XT 0
<I>T =| 0 -cos <I>T -sin @T (B-10) 7\T = | cos )\T sin )\T 0 (B-11)
0 sin @T ~CoS <I>T 0 0 1
The equations required for calculating rL, L BL’ and BT appearing in equations

(B-4) and (B-5) are given by:
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A2

1
r = 8/(cos? oot —?\2— sin? \IIL)Z (B-13)
b
BT = <I>T - 1IIT (B-14)
52 3
Ty = 4/(cos? Yot z; sin? \IIT)2 (B-15)
where
b2
v,o= tan~1 4z tan & (B-16)
ng ]
Vo = tan~1! Y tan @, | . (B-17)

The spherical coordinate transformation for the i-th observation is given by:

1
RN = (x*! +7Y® + 272 )2 (B-18)
1 es es. es,
1 1
r r
A, = -1 + < = ° -
; [ tan (zes./xes.)] Kp, 0 Ai 360 (B-19)
1 1
Y
r eS1 r
E, = tan~! 3|, 0= E; = 90° ) (B-20)
1 (X2 + zZ )2 1
esi es

69



An additional transformation is required to determine the (X, Y, Z)
position of the vehicle in an earth~fixed ephemeris coordinate system with
origin at the tracking site. This transformation is given by:

X = M op Ky Xesi (B-21)
where
X
X, =|Y (B-22)
z

i

and Xes is obtained from the transformation given by equation (B-1).
i
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APPENDIX C

A STEPWISE REGRESSION EXAMPLE ILLUSTRATING THE
GAUSSIAN ELIMINATION METHOD

As pointed out earlier, the Gaussian Elimination Method is ideally suited
for a stepwise regression analysis since it actually enters variables into the re-
gression equation one at a time. A significant variable entered into the
regression equation at an early step may, after several other variables are
entered, be found to be insignificant. This insignificant variable is then deleted
from the regression equation before another variable is considered for entry.
Thus, the final regression equation includes only the significant variables.

The complete method is best illustrated by taking a specific example and per-
forming the step-by-step operations. Assume there are p = 4 independent
variables to be considered for entry into the regression equation. The aug-
mented matrix similar to equation (117) is:

it Ti2 fis T Ty %4 s i _gﬁ
Y11 F12 Tiz fia Ty . 0 0 0
‘a1 Toz  Taz  Taqa Toy 0 1 0 0
A=ty Ty, Tgy Ty Tgy 0 0 1 O l(c-1)
a1 Y42 T4z Taa Tay 0 0 0 1
I‘Y1 rY.?. rY3 rY4 rYY 0 0 0 0
| —
Step 1

The first step consists of entering into the regression the variable most
highly correlated with the response. Thus the variable corresponding to the

2 2 2 2 2
largest of riY s r2Y, r3Y, and r4Y is selected for entry. Assume that r4Y
is the largest. Then the nondiagonal elements r and r_  of

14° Toa’ T34 Y4
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the fourth column are zeroed out. This is accomplished by dividing the fourth
row by r a4’ multiplying the new fourth row by (-r { 4) and adding the result
to the first row; multiplying the new fourth row by (-r2 4) and adding the result

to the second row; multiplying the new fourth row by (-r 3 4) and adding the

result to the third row; and finally, multiplying the new fourth row by (-rY 4)
and adding the result to the fifth row:.

~ ~

' ! ¢! c! o! Pl

1 1 1
Tit Tiz Tis Tig iy i1 %z S i4
. -
F117%14%21 T127T14%42 F137T 14743 0 iy T14tay t 0 0 -r/ry,
T4 Taq T44 P44
Fo17T24%41  TaoTa4%42 T2z a4 43 0 Yoy Taa"ay 0 { 0 -Ty/ry,
T44 T4 T4a T4
5 ¥317T34%41  T32 34742 T337 34743 0 T3y 3454y 0 0 1 rg/ry,
Taq Ta4q a4 T44
IVEIN LI LI t LI 0 0 o tr,
Tv17vaTa1 TyeFvatae TysVyafaz O tyy Tyatay 0 0 0 Ty /Ty,
T44 Y44 T4 T4q N
(C-2)

At this step the fourth element in the fifth column is the solution o, in the
normal equation:

“4%14 " Tay- (C-3)
The fourth element in the fourth row of the matrix ¢' to the right of the

line in equation (C-~2) contains the inverse of r 44’ Of the three variables not

in the regression the variable next considered for entry is the one whose
partial correlation with the response is highest; that is, the variable corresponding

ZY.4’ ng.4' These would normally be detegmined

as indicated earlier in this report. It can be verified, however, that piY 4

to the largest of p?Y 4 p

(i =1,2,3) can be obtained using elements of equation (C-2) by the equation:
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2
- o (C-4)
11 "YY

2 (riy)

Piv.4
Where i=1, 2, 3 and rii refers to the i-th diagonal element, riY refers to the
element in the i-th row, fifth colimn and rg{Y refers to the element in the fifth
row, fifth column of equation (C-2). Assume p?Y 4 is found to be the largest.

Then the test for entering the variable Z, is given by:

1
2
. _ Pry.q (2D (C-5)
1(IN) L2
Piv.4

If this F value is less than or equal to the appropriate table value, then

1(IN)

the variable Z { is not entered and the process is terminated.

Step 2

If, however, it is found that F is greater than the table value, then

1(IN)

the variable Z 1 is entered. This is done analogous to the manner in which Z 4

was entered in the first step. That is, the nondiagonal elements r'zi, réi, rL'M,

and r!_, of the first column in equation (C-2) are zeroed out and the following

Y1
new matrix is obtained:
" " " " " et ~n pel] Tl
1 ' 1 1 1 ' ' 1 e 1
/T ST 0 T /ey, 0 0 °i4/ 1y
ot 1 vt i 1 _pt 1 ! 1 St o_pt oAt
0 Y92 T21T12 ThaF2it1z O Ty Tty |1 ! 0 C247%91%14
1 ] 1 v
T11 Ti1 i1 i1
0 1 et 1 t _pt t t _pt ' _pt [} Tro_pt oot
T35 T5171s T337T3i%13 O S Tt 2 B VAT ! ®347731%14
1 r 1 1
Ti1 11 T11 Ti1
A=
t _pt t [ t [ 1 ) 1 S _pt ot
0 Ty Tu%1e TazTaT1s ! Ty Tarfiy et O 0 C447741%14
1 1 1 1
T4 T11 T11 T4
0 t _pt ] Vot t t _pt 1 _pt [l 0 Sto_pt ot
*yaTyiTie Tys TyaTig © e Tl e Tt 0 ®yaTy1%14
1 1) L} t
i1 T4 Ti1 11 B (C-86)
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I
o

At this step the first and fourth elements in the fifth column are the

solutions « 1 and o n respectively, in the normal equations:

11 P14 %y ryy

g1 Ta4 % Tav | . (C-7)

The elements in the 11, 14, 41, and 44 positions of the ¢'' matrix are elements
of the inverse matrix:

a1 Tas

Before the variables corresponding to & 2 and o 3 are considered for

entry into the regression, the variables in the regression are tested for
significance to determine if one should be deleted. This test for deletion is
always made before a variable is added to the regression. The two variables

in the regression corresponding to the coefficients « { and « 4 are considered

and F from:

for deletion by computing F 4(0OUT)

1(0OUT)

oziz (n-d)

2
Y. 14

Fi( ouT)

el (1-R )

(r1t ) 2(n-q)
_ iY
- (C-8)
ii YY

i = . Th 11 fF i ignifi
where i 1, 4. The smallest o 1(OUT) and F4(OUT)1S tested for significance

by comparison with the appropriate F table value. Assume the smallest is
found to be greater than the appropriate table value. Then both Z { and Z 4
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remain in the regression and one of the two remaining variables is considered
for entry into the regression. The variable considered for entry is the one
whose partial correlation with the response is highest; that is, the variable

corresponding to the largest of ng 14 and piY It can be verified that

14°
pizY 14 (i= 2,3) can be obtained using elements of equation (C-6) by the
equation:
2
(r!')
2 iY
P, alera— (C-9)
iv. 14 r 5 rYY

where i = 2,3, and r'' elements are the appropriate elements to the left of
the line in equation (C-6). Assume pZY 14 is found to be the largest. Then

the test for entering Z_ is given by:

2

2
Poy. 142D

Taw) © T 2
Poy. 14

(C-10)

Step 3

Assume FZ(IN) is indicated to be significant from the comparison with

the appropriate F table value. Then the variable Z 9 corresponding to « 9 is

ent d. Th i 1 r t ] "

ntere e nondiagonal elements r12, r32, r42, and r Y2 of the second
column in equation (C-6) are zeroed out and the following new matrix is
obtained:
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rl”
il

—

'

_i2

! e '
Y

_i3

Ho_ptt
T137Ti2%23

m
T2

) "
T3/ 5o

o
337 32" 3

Yoo

T
43 l"421'23

22

Ty3 Tyat2s
"
T2

i4

-t 14
Tiy i ey

-
a2

rn%rn

W o
T3y 1'321"23{

22

- pv

4Y 42 2Y

m
Faz

- "

YY Y2 2Y

-
Tag

c”l
i1

SN ettt At

C117712%1
"
Top

 Jn
o5/ %50

S o T
©317 " 32%1

m
Taz

Car 4%
=
Tag

1 ~l
v1 "ye%a1
1t
Ta2

1
°12'

RITAY)

"
1/1‘22

T/ T

" g
-r /r22

TyoThe

~
cn!

i3

clll
_i4

-ttt
¢y 1"12"247

Tag

1" 1"
%/ o

o
34 32 24

I
22

a4 1”42 24

=
22

-t l'
2 Tya%oq

2
4
(C-11)

At this step the first, second, and fourth elements in the fifth column are the

solutions «

—
r

11

Y21

r
| 41

1’

012,

r

12

r

22

Y42

and oz4,

r147

To4

Y44 i

Elements of the inverse matrix

-
T11

Ta1

Y41
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T2

Too

T4

- -1

Y14

To4

r
44

~—

respectively, in the normal equations:

(C-12)



are contained in the appropriate positions of the ¢''' matrix in equation (C-11),
The three variables in the regression are considered for deletion by computing

Ficoury’ Tacour)r 24 Fyoyr from:

a.z (n-d)
F = — =
i(ouT) ~ 2
°j' (1-Ry 194
(rnv)z (n—d)
_ 1Y
- artr et (C-13)
c r
ii YY
where i = 1,2,4. The smallest Fi(OUT) (i=1,2,4) is tested for significance

by comparison with the appropriate F table value. If the smallest is found to
be greater than the appropriate F table value then all three variables correspond-

ing to « 1 @ 90 Yy would remain in the regression. The remaining variable

would then be tested for entry by first computing:

2
e
2 _ gy
e 1t
3Y.124 r33rYY

(C-14)

The r''' elements are the appropriate elements in the matrix to the left of the
line in equation (C-11). The test for entering Z 3 is then given by:

2
F _ _P3v.124 (n-d) ot
3(IN) (- 2
P3y. 124
Ir F3 (IN) is found to be insignificant, then the process is terminated and the
final regression equation contains o 10 %y and a,.
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Step 4

If, however, F is found to be significant, then the variable

3(IN)

corresponding to o is entered by zeroing the nondiagonal elements r'i'é,

r’z'é, rZé, and 1"3'{'3 of the third column in equation (C-11). The following
new matrix is then obtained:

v v v v SV AV AV AV
i1 i2 i3 id iy i1 12 het) i4
- V= = - - — -
10 _ptitptan Siti_ptigtet Sani_pitigtn _plit/ et ANttt
1 0 0 0 T1vy T13Tsy 117" 13% 1 C127713%:2 rys/rys  CaTTisey
Tt "t "t "t
a3 33 T33 33
T _ptatptat STt petitnttt SHt_prngt ettt/ prit PETTERTY T
0 1 0 0 Toy T23%3y %21 7T93%2  C227723%:2 ryy/Th  ChiTpaCh
et Ty m ey
T33 T33 a3 33
T fptet St/ et NIy NTT " ITY2NTI
0 0 t 0 Ty 53 cyy/rhs cyy/TH3 Vryy cyy/ryy
5V
1 _ptitpiit SrHi_prrtatte Tt ptrigtrt _ptti/ptt DIt _pt I
0 0 0 t Tav T43 3y €317 43%1 C427"43%32 Y
e 1ty Ty mne
Ta3 33 33 33
1 _ptet ety STt ittt S _peitt gy ettt et ST ittt
0 0 0 0 vy Tyssy | Svi"ya%1 vz Tys%se rya/Tey CyaTTyChs
" T Tt AR
| 33 33 T33 rsa_J
(C-16)

At this step all the variables are in the regression and equation (C-16) is
given by:
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EIV 8IV EIV a'IV
1 11 12 13 14
~IV ~IV ~IV ~IV

0 1 0 0 @a a1 a2 23 %4
IV _ MV WAV AV AV
A 0 0 1 0 o 31 ©3 °33 34
0 0 0 1 e a1 42 °43 a4 (C-17)
_R? _
0 0 0 0 (I-Ry 1234)] % ey, e, g
n 3 4
where:
o — 1
A1V STV IV IV rr N N .
11 12 13 14 11 12 13 14
A1V STV A1V A1V N N N .
21 22 23 24 21 22 23 24
A1V A1V SIV av || N N N
31 32 33 34 31 32 33 34
IV IV IV A1V N . N N
K 42 43 44 41 42 43 44
- —
(C-18)

The four variables in the regression are considered for deletion by computing:

o2 (n-d)
1

Fitour) = Iv 2
c.. (1-R
ii Y. 1234

)

IV .2
(rv) (n-d)

= XY (C-19)
IV IV
i Tyy
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where i = 1, 2, 3, 4. If the smallest F, value is found to be greater

i(OUT)
than the appropriate F table value, then all four variables remain in the

regression and the process is terminated. If, however, the smallest Fi (OUT)

value is found to be insignificant, then the variable corresponding to this

Fi (OUT) value is deleted from the regression by zeroing the appropriate

elements in the column to the right of the line in equation (C-16). The column
selected corresponds to the particular variable being deleted.

The deletion process will be illustrated by going back to equation (C-11).
This equation contains the solution for the coefficients « T o 97 and o 4 Assume
F2(OUT) as computed by equation (C-13) is smaller than F1(OUT) and
F 4(OUT) and is found to be insignificant. Then Z 2 is deleted by zeroing the
first, third, fourth, and fifth elements of the c{'z' column. This is accomplished
by dividing the entire second row by 0'2'2'; multiplying the new second row by
(—3'1'2') and adding the result to the first row (zeros first element); multiplying
the new second row by (—gé'z') and adding the result to the third row (zeros
the third element) ; multiplying the new second row by (_811'2') and adding the

result to the fourth row (zeros the fourth element); and finally, multiplying the
new second row by ( —c1! ) and adding the result to the fifth row (zeros the

fifth element) :
ry ) ry ry r &V v s o
ii i2 i3 i4 iy ii i2 i3 i
1 - 1 TSt 0 ettt | St S ~|||_va|~v!|
SR T3 12 28 Ty Ciaay ey -eyehy o v €147 %12%4
C"' C”' c'Vl C,”
22 22 22 22
0 1/6"” rirt/out 0 "y gvn Sr/ann 1 St/
22 53/ %53 T2v’ C22 cyi/Chs 0 s/ Chy
0 1 e grtrprn 0 gt PSIIEESTENTT (TR PSIT]
VoL <53/ T337°32 03 T3y 32r2Y °31 °32°zi 0 ! ol C32°24
- cll'
22 2 €32 5
0 /S e " 1 1y PTTECTTYN I ~| ot
cyy/ %y Ty3ChnT a3 Ty Cathy 41 °42°21 0 0 a4 C42°24
Al T || "'
a2 a2 a2 o2
0 _NIIY EIV' Cl' rY'Y 0 'll - ’|’ 1 IYI_ Tt l” "_ ll' l
°yy/ s Tys Cyatos v yatey | Syivelar ° 0 yays° 24
c” c"' cl” cl"
L 22 22 22 22
(C-20)
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B ituti St S St 1 .
y substituting the elements ci 1 c 9 ci 4 ri3 and riY of equation

(C-11) (where i= 1, 2, 3, 4, Y) into equation (C-20), the following equation
is obtained:

" T 1 e Sre
1 r12 r13 0 r1Y 011 0 0 014
1" T 1] T ot
0 Ty a3 0 Ty | % . 0 ®24
AV -] o r! r' 0 r!! cn 0 1 oM
32 33 3Y 31 34
0 1" 1 1" art 0 art
T42 43 Loy | 4t 0 44
1" " 11 e ot
0 Ty, Tys 0 ryy | vt 0 0 ®y4
L —
(C-21)

This equation is seen to be equivalent to equation (C-6), which contains the

solution for the variables Z { and Z 4 in the regression.
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APPENDIX D

TEMS 1BM 7094 COMPUTER PROGRAM
FOR C-BAND RADAR TRACKING SYSTEMS

The various computational procedures in the TEMS method are
implemented through the use of a highly flexible IBM 7094 computer program.
Basically, the program consists of a main program and five subroutines.
Control parameters are input by way of data cards in the main program to
indicate the specific subroutines required for the reduction. Any combination
of terms in the total error models can be retained in a given regression through
the use of program control matrices. Trajectory data are processed independent
of storage capacity, and bad data or discrete points can be deleted by the use of
program control cards. A variable sampling rate can also be accepted. Addi-
tional features of flexibility include variable plot scaling and double precision
computations.

One of the areas with considerable flexibility is in the selection of the
specific error models for the reduction. Although constraints interrelate the
equations for AR, AA, and AE, the results for a single equation regression
can be obtained through the use of appropriate program control matrices. An
18 x 18 control matrix AA(I,J), consisting of 1's and 0's, is used for selecting

the elements of (ETV_V§+W) to use in a specific computer run. An 18 x 1 control

matrix BB(I, 1) is also used for selecting elements of (ETX_V N - I_ST\TVEC_ -W €)
to use. The use of these matrices enables any combination of terms in the

total error models to be retained in a given regression. A summary of the
basic logic and computations in the program is presented in the flow chart
herein ( Fig. D-1). Additional information on all aspects of the program
development is given in Reference 1.
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MAIN I

TDECK1

INITIALIZATION [€———

INPUT:
(1) 1D INFORMATION

(2) GZR, ci, qu

(3) TIME SPANS, At, SAMPLE RATE

(4) TOTAL NUMBER OF TERMS IN ERROR MODELS

(5} PLOT OPTIONS DESIRED

(6) OUTPUT TAPE OPTION FOR STEPWISE REGRESSION

INPUT:

(2

AA
(1) oy, AL, by, &¢, A1, hy, K, 0, b

CONTROL MATRICES FOR ERROR MODEL
SELECTION - AA(I, J), BB(, 1), D(I, 1)

(3) WEIGHT MATRICES W AND W

(4) COEFFICIENT APPROXIMATION MATRIX €
(5) COEFFICIENT A PRIORI MATRIX €™

COORDINATE TRANSFORMATIONS:
m X, =X,

(2) R
(3)

Xes-’ R
xes - X

DERIVATIVE
EVALUATION:
() R AE
) A E

TRACKING ERRORS:
(1) AR°=R"-R®

W ey

ERROR MODEL FACTORS:

OUTPUT TAPE OPTION OF
T, a, « ERROR MODEL

SUMMATION FOR:
M BTWB
(2 BTWN

O v S A S )
(3) AE® = E"- E°® , BA°,
3) €], €2 .+, €9
DETERMINE ELEMENTS OF My= (BTWE+W)
M7 AND M, TO USE IN L > ST ST To ——— P
C)" e T
ADJUSTMENT Mo=(B 'WN-B'WBC-W¢)
ADJUSTED PARAMETERS: CORRELATION COMPUTED
O o To=5+C L B{ COEFFICIENT |—— o DELTAS: SN
MATRIX, B AR, DA, AE
PARAMETER RESIDUALS:
Ve, "8Gt 6 G UNIT VARIANCE:
O—» Mo R Ly 2 (TEVVTED) N
Ve, = 8F1p+ Fip- Fi3 ° df
12
TDECK2 |
TDECK3 TDECK4 I

PLOT >
®_’ OPTIONS

PLOTS:

(1} Vg, Va, Vg, vs TIME

(2) AR, AR, AA, AA®,
AE, AE°, vs TIME
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FIGURE D-1.

> AR FACTORS
¥s TIME

DELTA FOR ADJUSTMENT:
5= (W,

OBSERVATIONAL RESIDUALS:
Vg = AR - AR
Vo = BA° - AA
Vg = AE® - AE

VARIANCE - COYARIANCE
MATRIX:

Fc= oMy’

—»()

TDECKS I

|_p| 4A FACTORS
15 TIME

AE FACTORS
¥s TIME

TEMS PROGRAM FLOW CHART



APPENDIX E

UNIVAC 1108 COMPUTER PROGRAM FOR APPLICATION OF
THE STEPWISE REGRESSION ANALYSIS PROCEDURES

This appendix contains a summary of the basic logic and computations
in the UNIVAC 1108 MAIN and STEPRG programs (Fig. E-1). The STEPRG
program was developed by debugging and modifying a UNIVAC 1108 regression
subroutine. It was made stepwise by incorporating into the subroutine the

stepwise procedures presented eariler in this report and by appropriate use
of the output.
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MAIN

MAIN PROGRAM
INITIALIZATION

PER

{3) NUM
YAR
@ Fye

INPUT PARAMETERS:
(1) NUMBER OF SETS OF DATA
(2) NUMBER OF DATA POINTS

SET
BER OF INDEPENDENT
IABLES

Four

BINARY TAPE INPUT OF INDEPEND-_
ENT YARIABLES AND RESPONSE
VARIABLE: _ _ -

SET 1: UL Al AR°i

SET 2: ay;s ag;e ..., ag;e AR,

SET 3: eqy;r ep* ooy og;° AEC;

i

IND =0
NSTEP =-1

| CALL STEPRG 1

ORDER OF PROCESSING:
SET 1 - RANGE
SET 2 . AZIMUTH
SET 3 - ELEVATION

o

OUTPUT FOR FINAL STEP:

}—

COMPUTE:

VY‘:

SyyA(Y,Y)

df

< o c
YLYR (Y5 YD
WHERE i =1, 2, ..., n AND
Y DENOTES'AR, A A, OR AE
=0 PRINTOUT (1ST STEP
NSTEP =NSTER + 1 ] onLyy
I nr 3) o
50 ( )r_pp 3oy
@7,
L
OUTPUT FOR ALL STEPS OTHER THAN 15T STEP:
(1) STEP NO. <0
(2) VARIABLE REMOVED OR ENTERED
() Fitoum OR Fqqny o
(4 oy NSTEP - LiM = IND = -1
(8) bt oy
(6) bp oy, FORI=1,2, o
(7) p% FOR VARIABLES NOT IN THE
REGRESSION
(8) CONTENTS OF A(l,J) MATRIX
<0 1ST STEP IN REGRE SSION:
SUBROUTINE STEPRG ——"@ oT
- 1 >0 5 _pP
—b@ (2) rpy
IND =0 IND =1 (3) df=n-.d
_ (4) FORM THE A(l,J) MATRIX
TPP TPY
AGIY = Gyp) " ryy
FIGURE E-1. MAIN AND STEPRG PROGRAM FLOW CHART
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INITIALIZATION FOR EACH STEP:
M b=0,1=1,2..p
(2) YOUT =. NOUT =0
VIN=0 NIN=0
=0

F.(ouT) = VOUT (df)

Fitoum) l

Fout <

v

2
(VIN) (d6-1)
FauN) BT (ViN)

Fin< Faun *
ENTRY |
~ CALCULATE
o > s
=df- MATRIX

FIGURE E-1.

T=T+1

COMPUTE (I=1, 2, ..., p): v, <0 o ALLY) Tsvy

v, = AL Y)Y ACY, 1) =

AL DAY, Y)
— v, =0
» - ALY
op~=¢o .
V>0 Y Si

FOR LARGEST POSITIVE V: FOR SMALLEST NEGATIVE V:

VIN=V,

NIN = | vouT = v,

NOUT =1
HAS 1 = p BEEN —
QLO- DONE?
lves
by =¥ -by Zy - byZy ... b, Z,
FOR p VARIABLES IN REGRESSION
G0 To @
DELETION |
Fout > | Fitoum \ ; Z;T’IT FINAL STEP
DETERMINE THE COMPUTED
RESPONSE:
(- C
Y3 Y5 o YT
Finz  Fun NG
IND =0

(Concluded)
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APPENDIX F

RESULTS FROM THE APOLLO-SATURN 501
VEHICLE FLIGHT TEST

This appendix presents a summary of the results from the Apollo-
Saturn 501 Vehicle Flight Test launched on November 9, 1967. The Stepwise
Regression Analysis results for the first and second burn data are presented
in Tables F-I through F-VII and Tables F-VIII through F-XI, respectively.
Coefficient correlations for the truncated error models for the first and
second burn data are given in Tables F-XII and F-XIII, respectively.

In the figures which follow these tables (F-1 through F-22), the tracking
errors for the various radars are represented by dots. The description of these
errors as obtained from the TEMS least squares adjustment program is
represented by the solid computed curves.

The least squares residuals for the truncated error models presented
in this appendix can be thought of as being composed of random errors and
unmodeled systematic errors. A high random error content in the data may
prevent a systematic error of comparable magnitude from being determined.
The latter errors are those that can be attributed to uncertainties in the
standard used in establishing the tracking errors, unknown systematic errors
not absorbed by those that are modeled, or to geometry limitations. The
presence of a significant unmodeled systematic error may prevent an adequate
description of the data from being obtained.
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TABLE F-I. RADAR 0. 18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 FIRST BURN DATA

Variable Step o
No. Linear Correlation No. Variables in Regression Y F Level
1 r[Cy | AR] = 0.76 1 Cy, Cs 3. 06 4459. 1
2 r[Cy | AR] = 0.94 2 Cy, Cs, Cy 2.22 301.3
3 r[Cy | AR} = 0.16 3 Cy, Cs, Cy, Cg 1.74 204, 1
4 r{C; | AR} = 0.96 4 Cy, Cs, Cq, Cg, Cy 1.73 9.3
5 r[C¢ | AR] =-0.33 5 Cy, Cs, Cq, Cq, Cy, Cq 1.72 4.9
6 r[C; | AR] =-0.96
7 r[Cs | AR] = 0.87 | Final | Cy Cs, Cg, Cy, Cq 1.71 -0.1
1 r[Cy | AA] = 0.60 1 | Dy, C, 0. 0089 191.5
2 r[D; | AA] = 0.55 2 | Dy, Cy, Dy 0. 0062 353. 9
3 r{Ds | AA] = 0.09 3 Dy, C,, Ds, Dy 0. 0061 13.6
4 r[ Dy | AA] = 0.12 4 Dy, Cy, D3, Dy, Dy 0. 0058 30.9
5 r[{D; | AA] =-0.43 5 Dy, Cy, Dy, Dy 0. 0058 -0.2
6 r[ Dy | AA] = 0.50
7 r[C; | AA] =-0.03
8 r{Cq | AA] =-0.13 | Final | Dy, C,, Dy, Dy, Cq 0. 0058 6.6
1 r[C, | AE] =-0.22 1 Fy, Cs 0. 0074 104.5
2 r[Fy | AE] = 0.15 2 Fy, Cs, Cq 0. 0067 68.8
3 r[Dy | AE] =-0.31 3 Fy, Cs, Cq, Cy 0.0061 74.3
4 r[D; | AE] =-0.44 4 Fy, Cs, Cq, Cy, Dy 0. 0060 9.9
5 r[C, | AE] = 0.01 5 Fy, CE, Cq, Cy, Dy, Dg 0. 0060 3.6
6 r[Cs | AE] = 0.49
7 r[C, | AE] = 0,06
8 r[C; | AE] =0.35

| Final | Fy, C¢, Cy, Dy, Dg 0. 0060 -1.0




T6

TABLE F-II, RADAR 19. 18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 FIRST BURN DATA

l Variable Step |

1 No. Linear Correlation | No.  Variables in Regression % F Level
'y " r[C; | AR] = 0.65 1 ' Cy Cy 5. 96 162. 2
2 r[C, | AR] = 0.57 - 2 | Cy, Cy, Cq 5.04 86.9
3 r[C, | AR] =-0.22 3 Cy» Cy, Cq Cs 2.78 494.5
4 r[Cy | AR] = 0.42
5 r[Cq | AR] = 0.17 | !
6 | r[C; | AR] =-0.64 |
7 | r[Cyg | AR] = 0.53 | Final ' Cy, Cy, Cq, Cj, Cq 2. 39 76. 9
1 r[Cy | AA]l = 0.78 | 1 ! Dy, Cy 0.0061  358.7
2  r[Dy | AA] = 0.41
3 | r[D; | AA] = 0.18
4 r[Dg | AA] = 0.25
5 r[D; | AA] =-0.24 )
6 r[Dg | AA] = 0.71 | |
7 | r[Cy; | AA] = 0.56 | i |
8 r[Cg | AA] = 0.10 | Final ‘ Dy, Cy, Dy 0.0042  234.9
|
1 r[C, | AE] =0.89 1t | F, C ©0.0050 | 2780.7
2 e[F; | AE] =-0.29 | 2 | Fy, Cq, Cy 0. 0049 13.1
3 r[Dg | AE] =-0.96 '
4 r[D; | AE] =-0.93
5 r[C; | AE] =-0.45
6 r[Cs | AE] = 0.08
7 r[Cq | AE] = 0.65
8 r[C; | AE] =-0.96
Final | Fy, Cq, Cy, Fs 0. 0048 9.5




TABLE F-III, RADAR 7, 18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 FIRST BURN DATA

Variable Step
No. Linear Correlation No. Variables in Regression %y F Level
1 r[C; | AR] =-0.36 1 Cy, Cy 3.35 3089. 3
2 rfCy | AR] = 0.15 2 Cy, Cq, C¢ 2.86 110.7
3 r[Cy | AR] = 0.77 3 Cgy, Cq, Cg, Cy 1.16 1493.9
4 r[C; | AR} = 0.31 4 Coy, Cyq, Cgq, Cy, Cp 1.15 4.9
5 r[Cq; | AR] = 0.32

| 6 r[C; | AR] = 0.96
7 r[Cg | AR] = 0.36 | Final | Cy, Cy, Cq, Cy, Gy, Cy 1.13 15.0
1 r[Cy | AA] = 0.28 1 Dy, Dy 0. 0037 76.6
2 r[ Dy | AA] =-0.44
3 r[D; | AA] =-0.09
4 | r[Dg [ AA] =-0.09 |
5 | r[D; | AA] = 0.45 |
6 | r[Dg | AA] =-0,06 |
7 r[Cs | AA] =-0.05 !
8 | r[C¢ | AA] =-0.37 | Final  Only 1 step.
1 b r[Cy | AE] = 0.03 1 ¥y, Dy | 0.0158 22.9
2 r[ Fy | AE] = 0,22 \
3 . r[Dg | AE] = 0.01
4 ~ r[Dy | AE] =-0,27
5 I r[Cy | AE] = 0.07 | |
6 " r[Cy | AE] = 0,004 |
7 r[Cg | AE] = 0.24 ! |
8 r[C; | AE] =-0. 16 ’

Final Only 1 step.
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TABLE F-IV, RADAR 3. 18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 FIRST BURN DATA

[ Kl l s !
b “ b

Variable - . Step |
No. Linear Correlation No. ' Variables in Regression CTY F Level
1 r[Cy | AR] = 0.47 1 Cg, Cs 5. 61 1669.0
2 r[Cy | AR] = 0.73 2 Co, Cs, Cy 2.36 1834.7
3 r[Cy, | AR] = 0.25 3 Cy, Cs, Cy, Cy 2.03 136.1
4 r[C; | AR] = 0.90 4 Co, Cs, Cy, Cy, Cg 1.93 45.3
5 r[C; | AR] = 0.62 5 Cy, Cj, Cy, Cq, Cq, Cy 1,87 24.2
6 r[C; | AR] =-0.26
7 r[Cg | AR] = 0.74 Final Cy, G5, Cy, Cq, Cg, Cy, Cg  1.82 22.8
1 r[Cy | AA] = 0.62 1 Dy, Cy 0. 0028 243.17
2 r[Dy | AA] = 0.43 2 Dy, Cy, Dg 0. 0025 117.1
3 r[D; | AA] = 0.30 3 " Dy, Cy, Dg, Dg 0.0024 7.9
4 r[Dy | AA] = 0.32
5 r{D; | AA] =-0,60
6 r[Dg | AA] = 0.41
7 r[Cs; | AA] = 0.07
8 r[Cg | AA] = 0.51 Final Dy, C,y, Dy, Dy, Dy | 0.0024 35.0
1 r[Cy | AE] =-0.11 1 Fy, Cq 0.0053 104.1
2 r[Fs | AE] = 0.44 2 Fy, Cq, Cs 0. 0051 25.2
3 r[Dg | AE] =-0.08 3 Fy, Cg, C5, Dy 0. 0044 133.9
4 r[D; | AE] =-0.42 4 Fy, Cg, Cs, Dy, Cy
5 r[Cy; | AE] =-0.13
6 r[Cs | AE] =-0.01
7 r[C; | AE] = 0.46
8 r[C; | AE] =-0,23

Final Fy, Cg, Cs, Dy, Cy, Fy 0. 0043 16.8




TABLE F-V. RADAR 67. 16 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 FIRST BURN DATA

Variable Step
No. Linear Correlation No. Variables in Regression %y F Level
1 r[C, | AR] =-0.88 1 Cyp, C4 14. 66 990. 2
2 r[Cy | AR] =-0.49 2 Cq, Cy, Cq 7.96 687. 8
3 r[C, | AR] = 0.83 3 Cy, Cy, Cq, Cy 3.91 898. 3
4 r[C; | AR] =-0.25 4 Cy, Cq, Cy 3.91 -1.6
5 r[Cg | AR] =-0.78 5 Cp, Cg, Cy, Cg 2.76 291.5
6 r[C; | AR] = 0.23
7 r[Cy | AR] =-0.31 Final | C,, Cq, Cq, Cg, C4 2.73 7.5
1 r[Cy | AA) = 0,07 | Dy, Ds 0.0099 | 1178, 0
2 r[ Dy | AA] = 0.90 2 Dy, Dy, Dy 0.0078 | 182.9
3 r[ Dy | AA] =-0.10 3 Dy, Ds, Dy, D 0.0072 | 47.7
4 r[D; | AA] =-0.10
5 r[D; | AA] = 0,84
6 r[Dy | AA] = 0,25
7 r[C; | AA] =-0.11
8 r[Cq | AA) = 0,03 | Final | Dy, Dy, D;, Ds, Cq 0.0072 3.8
1 r[C, | AE] = 0.46 1 F,, Fs . 0.0092 | 299.1
2 r[F3 | AE}] = 0,71 2 Fy, Fg, Dy ® 0.0050 | 696.4
3 r[Dg | AE] = 0.63 3 F,, F3, Dg, Cq 0.0045 | 65.0
4 r[D; | AE] = 0,05
5 r[C, | AE] = 0.02
6 r[Cs | AE] = 0.70
7 r[Cy | AE] =-0.42
8 r[C; | AE] = 0.41

Final | Fy, F3, Dy, Cq, Dy 0.0044 | 10.1
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TABLE F-VI. RADAR 67. 18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 FIRST BURN DATA

i

Variable ’ Step ‘

No. Linear Correlation ! No. | Variables in Regression OY F Level
Co1 r[C; |AR] =-0.68 1 Co, Cq 18. 03 394.5
2 r[Cy |AR] =-0.32 ' 2 Cy, Cq, Cy 3.61  [7061.2

3 r[C, |AR] = 0.60 ' 3 Co, Cg, Cy, Cy 2,18 511,4

4 r[C; | AR] =-0.004 4 Cy, Cq, Cy, Cq, Cy 2. 04 41,9

5 r| CG lAR] =-0.76 5 i Co, CG’ CI’ C7, C4, Cz 1.95 30.0

6 r[C; |AR] = 0.33 ’ i

7 r[Cg |AR] = 0.26 | Final Cgy, Cy, Cq, Cy, Cy - 1,95 -0.8
o r[Cy |AA] =-0.14 | 1 Dy, Ds 0.0043 131.3

2 r[Dy |AA] = 0.56 2 Dy, Ds, D ~0.0042 14.6

3 r[D; |AA] = 0.15

4 r[Dg | AA] = 0.13
.5 r[D; |AA] = 0.38
6 r[D; | AA] =-0.06

7 r[Cs; |AA] =-0.08

8 r[C; |AA] =-0.05 Final Dy, Dy, Dy, Dy 0. 0042 5.6
b1 r[Cy | AE] = 0.53 1 Fy, Cy 0.0046 118.2

2 r[Fy |AE] = 0.05 2 Fy, Cy, Dy 0.0044  34.0

3 r[Dy |AE] = 0.49 3 Fy, Cy, Dy, Fy 0. 0038 94.6

4 r[D; |AE] =-0.47 4 Fg, Cy, Dy, F3, Cs 0.0035 50.7

5 r[C, |AE] = 0.15 5 Fy, Cy, Dg, Fy, Cs, Cq 0.0035 12.4

6 r[C; |AE] = 0.19

7 r[C; |AE] = 0.26

8 r[C; |AE] = 0.21

Final | F,, Cy, D;, Fy, Cs, Cq, C4 0.0034 7.9

§ |



TABLE

F-VII. RADAR 1.16 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 FIRST BURN DATA

Variable Step
No. Linear Correlation No. Variables in Regression CTY F Level
1 r[C; | AR] = 0.64 1 Cy, Cs 4.55 1190.1
2 r[C, | AR] = 0.89 2 Cp, C5, Cy 4,51 5.2
3 r[C, | AR] = 0.36 3 Cy, Cs, Cy, Cg 4,34 18.3
4 r[Cs; | AR] = 0.92 4 Cg, C5, Cy, Cq, Cy 4.06 32.8
5 r[C¢ | AR] =-0.42
6 r[C; | AR] =-0.89
7 r[Cg | AR] = 0.79 Final | C,, Cj5, Cg, Cy 4. 05 -0, 06
1 r[Cy | AA] = 0.70 1 Dy, Cy 0.0126 216.2
2 r[Ds | AA] = 0.53 2 Dy, Cy, Dy 0.0106 95. 6
3 r[ Dy | AA] = 0.28 3 Dy, Cy, Dyq, Dy 0.0103 12.8
4 r[Dg | AA] = 0.31
5 r[D; | AA] =-0.41
6 r[Dg | AA] = 0.67
7 r[Cs; | AA] = 0.43
8 r[Cg | AA] = 0.12 Final Dy, Cy, Dy, Dg, Cq 0.0102 5.9
1 r[Cy | AE] = 0.001 1 Fy 0.0101
2 r[ Fy | AE] =-0.03
3 r[ Dy | AE] =-0.004
4 r[D; | AE] =-0.01
5 r[C, | AE] = 0.06
6 r[C5; | AE] = 0.02
7 r[Cy | AE] = 0,01
8 r[C; | AE] =-0.01

Final | Only 1 Step.
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TABLE F-VIII. RADAR 91, 18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 SECOND BURN DATA

-

Variable Step
No. Linear Correlation No. Variables in Regression GY F Level
1 r[Cy |AR] =-0.97 1 Cy, Cg 4.12 63402. 7
2 r[Cy | AR] =-0.85 2 Cy, Cg, Cq 2.61 1024.5
3 r[Cy, |AR] = 0.21 3 Cyp, Cg, Cq, Cy 2.04 438.3
4 r[Cs; | AR] =-0.88 4 Cys Cg, Cq, Cy, C,4 1.90 99,4
5 r[Cg | AR] =-0.97
6 r[C; |AR] = 0.99
7 r[Cs | AR] =-0.99 Final | Cy, Cg, Cy, Cy, C4, Cy 1,77 105.8
1 r[C, | AA] = 0,14 1 Dy, C, 0. 0037 13.5
2 r[D; |AA] = 0.08 2 Dy, Cy, Dy 0. 0037 3.9
3 r[Dg | AA] =-0.01 3 Dy, Cy, D5, Dg 0. 0037 4.7
4 r[Dg | AA] = 0.005 4 Dy, Cy, D5, Dg, Dy 0. 0036 7.8
5 r[D; | AA] =-0.14 5 Dy, Cy, Dg, Dy 0. 0036 -0. 05
6 r[Dy |AA] = 0.11
7 r[Cy; |AA] = 0.09
8 r[C; |AA] = 0.002 | Final | Dy, Cy, Dg, Dy, Dy 0,0035 | 36.7
1 r[C, |AE] = 0.38 1 Fy, Cy 0. 0055 118.4
2 r[F3 |AE] =-0.25
3 r[Dg | AE] = 0.37
4 r[D; |AE] = 0.35
5 r{Cy | AE] =-0.02
6 r[C; |AE] = 0.18
7 r[C; |AE] = 0.14
8 r[C; |AE] = 0.34

Final | Fy, C,, Fj3 0. 0054 11.8
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TABLE F-IX., RADAR 3.18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 SECOND BURN DATA

Variable Step
No. Linear Correlation No. Variables in Regression UY F Level
1 r[Cy | AR] =-0.03 1 Cy, Cy 7.16 6504.7
2 r[Cy | AR] =-0.98 2 Cy, Cy, Cq 5. 85 160.9
3 r[Cy | AR] =-0.47 3 Cy, Cy, Cg, Cs 4.53 214.1
4 r[Cy | AR] =-0.97 4 Cq, Cs, Cgy Cs, C4 3.48 221.1
5 r[Cy | AR] =-0.87
6 r[C; | AR] = 0.44
7 r[Cg | AR] =-0.96 Final | Cg, C,, Cq4, Cs, Cy, Cq 3.37 22.3
1 r[C, | AA] =-0.16 1 Dy, Ds 0.0038 44.1
2 r[Dy | AA] = 0.34 2 Dy, D3, Dy 0.0037 17.8
3 r[Dy | AA] =-0.21 3 Dy, D3, Dy, Dg 0. 0036 21.5
4 r[Dg | AA] =-0.22 4 Dy, D3, Dy, D5, Dg 0.0035 8.2
5 r[D; | AA] =-0.24
6 r[ Dy | AA] =-0.14
7 r[C; | AA] =-0.01
8 r[Cg | AA] = 0.19 | Final | Dy, Ds, D;, Dg 0.0035 -0.9
| r[Cy | AE] =-0.08 | 1 Fy, Cq 0.0048 267.6
2 r[Fy | AE] = 0.53 |
3 r[Dg | AE] = 0.08
4 r[D; | AE] =-0.58

5 r[Cy | AE] =-0.51 |
6 r[Cy | AE] =-0,001 |
7 r[Cq | AE] = 0.52 |
8 r[C; | AE] =-0.67 | |

& Final | Only 1 step
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TABLE F-X. RADAR 19. 18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 SECOND BURN DATA

I

Variable Step
No. Linear Correlation No. Variables in Regression % F Level
1 r[C; |AR] =-0.63 1 Cop, Cy 8.29 11057. 6
© 2 r[C; | AR] =-0.98 2 Cy, Cy, Cg 4,73 1019.6
3 r[Cy |AR] = 0.27
| 4 r[C; | AR] =-0,97
5 r[Cg; | AR] =-0.97
6 r[C; |AR] = 0.66
7 r[C; | AR] =-0.98 Final Cy, Cy, Cg, Cq 4,12 153.8
1 r[Cy | AA] =-0.48 1 Dy, Dy 0, 0051 185.9
2 r[Dg | AA] = 0.48 2 Dy, D5, Dy 0. 0043 198.9
3 r[Ds | AA] =-0.52 3 Dy, Ds, D3, Dy 0.0042 26.5
4 r[Dg | AA] =-0.50 4 Dy, D5, D3, Dy, Dy 0.0042 3.9
5 r[D; |AA] =-0,37 5 Dy, D5, Dy, Dy, Dg, Dg 0. 0039 84.3
6 r[Dg | AA] =-0.42
7 r[Cy; | AA] =-0.41
8 r[Cq | AA] =-0.00 Final | Dy, D3, Dy, Dg, Dg 0.0039 -1.5
1 r[C, | AE] =-0.18 1 Fy, Cq 0.0068 739.6
2 r[Fy |AE] = 0.40 2 Fy, Cq, Cy4 0. 0065 44.3
3 r[D; | AE] =-0.35 3 Fy, Cq, Cy» Dy 0, 0064 26,9
4 r[D; |AE] =-0.75 4 Fy, Cy, Dy 0. 0064 ~1.4
5 r[Cy |AE] =-0.76 5 Fy, C4, Dy, Fy 0.0063 14,7
6 r[C; |AE] = 0.02 6 Fy, C4, Dy, F3, Dy 0.0062 13.4
7 r[C; |AE] = 0.33
8 r[Cy; |AE] =-0.76
Final | Fg, C4, F3, Dy 0. 0062 -0,2

1l
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TABLE F-XI. RADAR 67.18 STEPWISE REGRESSION ANALYSIS RESULTS FOR AS-501 SECOND BURN DATA

Variable Step

No. Linear Correlation No. Variables in Regression GY F Level

1 r[C; | AR] =-0.98 1 Co Cy 8.73 28286. 9

2 r[C, | AR] =-0.62 2 Cy, Cy, Cq 4.89 1889. 6

3 r[Cy | AR] = 0.44 3 Cy, Cy, Cg, Cy 4.76 46.9

4 r[C; | AR] =-0.62 4 Cy, Cy, Cg, Cy, Cy 4,58 70.1

5 r[C; | AR] =-0.94 5 Cy, Cy, Cq, Cy, Cy, Cy 4,23 148.4

6 r{C; | AR] = 0.30 6 Cys Cg, Cy, Cy, Cs 4,23 -0.05

7 r[C; | AR] =-0.96 7 Cy, Cg, Cy4, Cy, C5, Cy 4.13 39.7

8 Cy, Cq, Cy, Cy, C5, Cq, Cq| 3.91 103.8

Final All 3.85 28.4

1 r[Cy | AA] =-0,53 1 Dy, Cy 0.0046 333.5

2 r[ Dy | AA] =-0.04 2 Dy, C,y, Dg 0.0046 6.4

3 r[Ds | AA] = 0,47 3 Dy, C,, Dy, Dy 0. 0042 171.6

4 r[Dg | AA] = 0.48 4 Dg, Cs, Dg, Dy, Ds 0.0041 18.8

5 r[D; | AA] =-0.22 5 Dy, Cy, Dg, Dy, D, Dg 0. 0040 50. 1

6 r[Dg | AA] =-0.46

7 r[Cs | AA] = 0.02

8 r[Cg | AA] =-0.01 Final Dy, Cy, Dg, Dy, D5, Dg, Dg| 0.0040 26.9

1 r[C, | AE] = 0.001 1 Fg, Dg 0. 0057 64.8

2 r[ F3 | AE] =-0.001 2 Fy, Dg, C, 0. 0054 114, 8

3 r[Dg | AE] = 0.26 |

4 r[D; | AE] = 0.10

5 r[C, | AE] =-0.16

6 ' r[Cy | AE] =-0.08

7 r[Cq | AE] = 0.02

8 r[Cr [ AEL = 0.3 | pinal  Fy, Dy, Cy, €, 0. 0053 43.0




TABLE F-XII, COEFFICIENT CORRELATIONS FOR THE
TRUNCATED AS-501 FIRST BURN RADAR ERROR MODELS

C¢, € G D Dy Dy F, Fy
Cy |1.00|-0.92 ]| 0.12 |0.01 | 0. |-0.02] 0. [o.
c, MO I-0.16 Lo.01 0. [o.03] 0. [o.
¢, | 1.00 |0.05] 0.0-0.18 | 0.01 0.
D, |1.00 |-0.03 0.25 |-0.04-0.01
‘b, | 1.0d-0.12 [ 0.04 0. 01
Dy | 1.00 |-0.04-0. 05
Fy | 1.00 0.03
F; | 1.00
Radar 67. 16
C¢, € G D Dy Dy F, Fy
Co [1.00] 0.88 J-0.18 |-0.01| 0. | o0.05]-0.02] 0.
c, | t.oo | 0.41 | 0.02 | 0.01lo.10] 0.04] 0.01
C, |1.00 [ 0.05] 0.02f0.25] 0.09] 0.01
"D, | 1.00 |-0.03] 0. 26 ~0.10[-0. 02
by | 1.00F0.13] 0.05] 0. 01
Dy | 1.00] -0.39}0. 07
‘F, | 1.00]0.06
F, | 100
Radar 67. 18 '
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TABLE F-XII,

( Continued

Co C, Cy Dy Dy Fy
1.00 | -0.15 0.77 0.01 | o. 0.02
C, 1.00 | o.25 |-0.10 | 0.01 | 0.01
c, 1.00 |-0.03 | o. 0. 03
D, 1.00 [-0.24 |o.
D, 1.00 |o.
F, 1. 00
Radar 7. 18
¢, ©C ¢ D, Dy D F, Fy
1.00[-0.75 [ 0.58 | 0.06 | o. 0. |o.01 [-0.06
C, |1.00 |0.05 [-0.01 [-0.04 [-0.10[ 0.09 | o.
c, |1.00] o0.10[-0.06|-0.13] 0.10 [-0.12
D, | 1.00 [~0.27 |-0.72| 0.66 |-0.06
D, | 1.00| 0.43k0.39 | 0.03
D, | 1.00}-0.91 [ 0.08
F, | 1.00 |-0.03 |
Radar 0. 18 Fy 1.00
c,¢6 © ¢ D, D5 D F Fs
1.00] -0.82 [ 0.63 |-0.03 ] 0.09 |-0.02-0.01 |-0.17
C, |1.00 [-0.37 | 0.03[-0.05|-0.07 0.07 | 0.10
c, |1.00][-0.02] 0.13]-0.18 0.10 |[-0.26
D, | 1.00]-0.80| 0.060.06 | o.
D, | 1.00[-0.5¢ 0.52 [-0.01
D, | t.0d-0.02 | 0.
F, | 1.00 | 0.07
Fy 1.00
Radar 19. 18




TABLE F-XII, (Concluded)

Gy |1.00 [-0.37 | 0.56]| 004 | 0. Jo.02 o.
c, | 1.00 Io.41 ~0.12 ] 0.01 |o0.02 ]o.o01
¢, | 1.00]-0. 05 | 0. |o.04 |o0.01

D, | 1.00] 0.02 Jo. 0.

Dy | t.00 |o. 0.
F, |1.00 |0.30
Fy  [1.00

Radar 3. 18
Co Cy C, Dy Ds Dy Fo

Cy 1.00 §0.19 ]—0.61 -0,11 ] 0.21 ] 0.27 ]-0.23

it

1.00 | 0.84 |-0.15 | 0.29 [ 0.37 [-0.31
c, | 1.00 | 0.18|-0.35 |-0.44 | 0.37

Dy | 1.00 |-0.56 |-0.80 | 0.73
D; | 1.00] o0.68 [-0.62

D, 1.00 |-0. 91

Fy 1.00

Radar 1. 16
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TABLE F-XIII. COEFFICIENT RADAR CORRELATIONS FOR THE
TRUNCATED AS-501 SECOND BURN ERROR MODELS

104

c¢, € C D Dy D F, Fy
1.00] -0.87 | 0.33 |-0.01 | 0. 0. 0. 0.
c, | t.00]-0.56| 0.03 |o. 0.01 | o. 0. |
c, | 1.00-0.05 [-0.01 f-0.01] 0.01 | o.
D, | t.00 |-0.07 [-0.20 | 0.17 [-o0.10
D; |1.00 | 0.45[-0.37 | o.21
D, | 1.00|-0.83 | o0.48
F, | 1.00 [-0.38
Fy 1. 00
Radar 19. 18
c, C D, D F, Ty
1.00 [ 0.0t o. 0. 0. 0.
c, |1.00)-0.06] 0. 0. 0.
D, | t.00] o. 0. 0.
D, | 1.00] o. 0.
F, | 1.00 [o0.25
F; | 1.00
Radar 3. 18
c, © C D, Dy F,
1.00 |-0.69 {-0.02 | o. 0. Jo |
c, |1.00|-0.55 [-0.01] 0.02 | 0.01
c, |1.00]| 0.03]-0.04 [-0.02
D, | 1.00] 0.22 | 0.12
D, | 1.00] 0.53
F, | 1.00
Radar 67. 18



TABLE F-XIII. (Concluded)

C, € € D Dy F, Fy
c, |1.00] -0.67] 0.01] o. 0. Jo. 0.
c, |-1.00]-0.69] 0.04 | o. 0. 0.
c, | 1.00]-0.05|o. 0. 0. 01
D, | .00 }o0.35 Jo. 0.
D, | 1.00 |o. 0.
F, |1.00 | o0.44
F; | 1.00
Radar 91. 18
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